1
|
Gao H, Qian H, Meng Z, Chang S, Wang X, Han Z, Liu Y. Biomimetic materials for efficient emulsion separation: Based on the perspective of energy. Adv Colloid Interface Sci 2025; 341:103486. [PMID: 40163905 DOI: 10.1016/j.cis.2025.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Purifying emulsified oily wastewater is particularly crucial for solving environmental pollution and water scarcity. Membrane separation shows great potential for emulsified wastewater treatment. However, realizing continued effective emulsion separation remains a significant challenge. Fortunately, various kinds of creative schemes have been proposed to overcome the current dilemma. In this paper, biomimetic emulsion separation materials with unique wettability are introduced. Besides, This article summarizes the recently advanced emulsion separation strategies. First, we analyze the typical wettability theory and explore the trade-off between separation flux and efficiency. After that, based on emulsion types, the current common emulsion separation materials are summarized and analyzed. Notably, the integration of natural biological inspiration has made separation materials full of potential. Further, from the perspective of external energy input or no-external energy input, this article provides an overview of advanced emulsion separation materials and analyzes the potential separation mechanism. Encouragingly, efficient emulsion separation can be realized by membrane characteristics (microstructure, superwettability, electrostatic interaction) or the appropriate external stimulus (photo, electricity, magnetic). Finally, the challenges and trends are summarized. We hope that this article will provide inspiration for the advancement of novel generations of separation materials.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Haiyu Qian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siyu Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Xi Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, PR China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Yang J, Ding C, He M, Wang X, Chen J, Qi D, Sun Y. Charge-dominated phase separation synthesis method of Janus particles with well-defined separated lobes and patternable surface chemistries. J Colloid Interface Sci 2025; 695:137804. [PMID: 40347652 DOI: 10.1016/j.jcis.2025.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Synthesizing Janus particles (JPs) with well-defined separated lobes and customizable surface chemistries has broad scientific and engineering application prospects but has proven extremely challenging. Here, we report a novel phase-separation-based fabrication method leveraging charge-dominated seeded emulsion polymerization, which enables the synthesis of JPs with multi-scale lobe architectures (ranging from isotropic asymmetric shapes to chemically anisotropic forms such as ellipses, dumbbells, and triblock structures) and customizable surface chemistries (including functional groups like carboxyl, sulfate, and sulfonate). Our method is based on the principles of multicomponent systems' heterogeneous nucleation and growth, where the interfacial energy is meticulously controlled by fine-tuning the surface charges/chemical properties of polystyrene (PS) seeds and methacryloxypropyl trimethoxysilane (MPS) emulsions, while the growth kinetics of polymethacryloxypropyl trimethoxysilane (PMPS) lobes are guided through a synergistic combination of radical polymerization and hydrolysis-condensation reactions. Charge-dominated repulsive forces at the interface play a crucial role in driving the phase separation, enabling the synthesis of well-defined JPs and making this strategy broadly applicable to a variety of negatively charged PS seeds or MPS emulsions for customizable two-lobe surface chemistries. Furthermore, the PMPS hemisphere can be selectively modified, enabling applications in Pickering emulsions. This work offers a scalable method for the controllable fabrication of JPs with programmable architectures and surface chemistries.
Collapse
Affiliation(s)
- Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunyu Ding
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinqing Wang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyu Chen
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Zhang Y, Tian S, Sha Q, Lv J, Han N, Zhang X. Covalent organic framework functionalized smart membranes with under-liquid dual superlyophobicity for efficient separation of oil/water emulsions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166895. [PMID: 37683856 DOI: 10.1016/j.scitotenv.2023.166895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The smart membrane with under-liquid dual superlyophobicity, which can achieve on-demand separation of oil/water emulsions only by simple liquid pre-wetting, is of essential value for the treatment of complicated real oil/water systems. Here, we first fabricated a stable suspension of imine-linked covalent organic framework nanospheres (TPB-DMTP-COF), and subsequently fabricated COF functionalized smart membranes with under-liquid dual superlyophobicity by immersing polyacrylonitrile-based (PAN-based) membranes into TPB-DMTP-COF nanosphere suspension. Accordingly, effective switchable separation of both oil-in-water and water-in-oil emulsions by TPB-DMTP-COF/PAN membranes can be achieved by employing pre-wetting processes (both the oil contact angle under water and the water contact angle under oil are over 150°). Specifically, the separation flux and the separation efficiency are higher than 1200 L/m2‧h and 98.0 %, and 2100 L/m2‧h and 97.4 % for the surfactant-stabilized oil-in-water and water-in-oil emulsions, respectively. Furthermore, the ultralow adhesions in liquid contributed to the outstanding reusability and antifouling resistance of the prepared TPB-DMTP-COF/PAN membranes. This work provides a feasible approach for fabricating a smart membrane with under-liquid dual superlyophobicity for oily wastewater treatment.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shiwei Tian
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qiankun Sha
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China
| | - Jinjie Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China; Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Li Z, Xie W, Zhang Z, Wei S, Chen J, Li Z. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. Int J Biol Macromol 2023; 245:125524. [PMID: 37355070 DOI: 10.1016/j.ijbiomac.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Membrane technology is widely recognized as an efficient and advanced approach for wastewater treatment. However, the development of environmentally friendly and versatile membranes capable of effectively removing multiple contaminants remains a significant challenge. Inspired by natural magnets, we developed a heterostructured membrane using biomass materials to achieve the efficient removal of multiple contaminants from wastewater. Specifically, a bionic three-layer SA/GO/CS composite membrane was prepared by using sodium alginate (SA) and chitosan (CS) to modify graphene oxide (GO), respectively, and then assembled to both sides of the glass fiber (GF) membrane. The composite membranes achieved 99.87 % and 97.10 % removal of NPs with particle sizes of 500 nm and 50 nm. Moreover, the membrane demonstrated superior separation performance for mixed wastewater, enabling effective treatment of a broad spectrum of contaminants. Additionally, the membrane exhibited excellent stability when exposed to strong acid and alkali environments and demonstrated good recyclability throughout the multiple contaminants removal process. The bionic membrane, prepared using a straightforward method proposed in this study, provides an effective approach for enhanced removal of multiple contaminants in water. These findings contribute to the advancement of eco-friendly and versatile wastewater treatment membranes, opening new possibilities for sustainable water purification technologies.
Collapse
Affiliation(s)
- Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Wei Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Jiaqi Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
5
|
Wagner J, Akdere M, Gürbüz K, Beek L, Klopp K, Ditsche P, Mail M, Gries T, Barthlott W. Oil adsorbing and transporting surfaces: a simulative determination of parameters for bionic functional textiles. BIOINSPIRATION & BIOMIMETICS 2023; 18. [PMID: 36881911 DOI: 10.1088/1748-3190/acc224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Certain superhydrophobic plants, such asSalvinia molesta, are able to adsorb oil films from water surfaces and thus separate the oil from the water. There are first attempts to transfer this phenomenon to technical surfaces, but the functional principle and the influence of certain parameters are not yet fully understood. The aim of this work is to understand the interaction behavior between biological surfaces and oil, and to define design parameters for transferring the biological model to a technical textile. This will reduce the development time of a biologically inspired textile. For this purpose, the biological surface is transferred into a 2D model and the horizontal oil transport is simulated in Ansys Fluent. From these simulations, the influence of contact angle, oil viscosity and fiber spacing/diameter ratio was quantified. The simulation results were verified with transport tests on spacer fabrics and 3D prints. The values obtained serve as a starting point for the development of a bio-inspired textile for the removal of oil spills on water surfaces. Such a bio-inspired textile provides the basis for a novel method of oil-water separation that does not require the use of chemicals or energy. As a result, it offers great added value compared to existing methods.
Collapse
Affiliation(s)
- Jan Wagner
- Institut fuer Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany
| | - Musa Akdere
- Institut fuer Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany
| | - Kevser Gürbüz
- Institut fuer Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany
| | - Leonie Beek
- Institut fuer Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany
| | - Kai Klopp
- Heimbach GmbH, An Gut Nazareth 73, 52353 Dueren, Germany
| | - Petra Ditsche
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, 53115 Bonn, Germany
| | - Matthias Mail
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, 53115 Bonn, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Gries
- Institut fuer Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany
| | - Wilhelm Barthlott
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, 53115 Bonn, Germany
| |
Collapse
|
6
|
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. MEMBRANES 2022; 12:915. [PMID: 36295674 PMCID: PMC9606928 DOI: 10.3390/membranes12100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Every year the problem of water purification becomes more relevant. This is due to the continuous increase in the level of pollution of natural water sources, an increase in the population, and sharp climatic changes. The growth in demand for affordable and clean water is not always comparable to the supply that exists in the water treatment market. In addition, the amount of water pollution increases with the increase in production capacity, the purification of which cannot be fully handled by conventional processes. However, the application of novel nanomaterials will enhance the characteristics of water treatment processes which are one of the most important technological problems. In this review, we considered the application of carbon nanomaterials in membrane water purification. Carbon nanofibers, carbon nanotubes, graphite, graphene oxide, and activated carbon were analyzed as promising materials for membranes. The problems associated with the application of carbon nanomaterials in membrane processes and ways to solve them were discussed. Their efficiency, properties, and characteristics as a modifier for membranes were analyzed. The potential directions, opportunities and challenges for application of various carbon nanomaterials were suggested.
Collapse
|