1
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Wu Q, Xu S, Yue Z, Zhou H, Jin W. Ultra-stable fully-aromatic microporous polyamide membrane for molecular sieving of nitrogen over volatile organic compound. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132151. [PMID: 37506641 DOI: 10.1016/j.jhazmat.2023.132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microporous polymer membranes are promising candidates for industrial membrane-based gas separation because of their high separation performance. However, their relatively low stability due to the local rearrangement of polymer chains during usage remains a problem. Hence, we propose the construction of a fully aromatic polymer structure in a microporous polymer membrane to enhance membrane stability. Four triptycene-based microporous polyamides were synthesized via the polymerization of 2,6,14-triaminotriptycene with aromatic acyl chloride and/or aliphatic acyl chlorides. Their properties were characterized and compared by using nuclear magnetic resonance (NMR) and Brunauer-Emmett-Teller analyses. The synthesized polyamides were fabricated into composite membranes by employing a solution process; their stability was evaluated for the molecular sieving of nitrogen over volatile organic compounds such as cyclohexane. Low-field NMR and X-ray photoelectron spectroscopy were used to investigate the differences in the properties of membranes with different structures at different times. The results showed that the fully aromatic polyamide membrane made from 2,6,14-triaminotriptycene and aromatic acyl chloride displayed constant rejection (99 %) and nitrogen permeability (approximately 50 Barrer) for the molecular sieving of nitrogen over cyclohexane during 100-d experiments, indicating good stability. This approach paves the way for the industrialization of microporous polymer membranes from a theoretical perspective.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Qiao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Shilin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Zhongyuan Yue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Haoli Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou 215699, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| |
Collapse
|
3
|
Hirosawa F, Watanabe K, Miyagawa M, Takaba H. Direct evaluation of void effect on gas permeation in mixed matrix membrane by non-equilibrium molecular dynamics. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Gutiérrez-Hernández SV, Pardo F, Foster AB, Gorgojo P, Budd PM, Zarca G, Urtiaga A. Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Liao R, Guo Y, Yang L, Zhou H, Jin W. Solvent-induced microstructure of polyimide membrane to enhance CO2/CH4 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Li N, Wang Z, Wang J. Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD) / polyamide (PA) membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|