1
|
Xu H, Chen S, Zhao YF, Wang F, Guo F. MOF-Based Membranes for Remediated Application of Water Pollution. Chempluschem 2024; 89:e202400027. [PMID: 38369654 DOI: 10.1002/cplu.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Membrane separation plays a crucial role in the current increasingly complex energy environment. Membranes prepared by metal-organic framework (MOF) materials usually possess unique advantages in common, such as uniform pore size, ultra-high porosity, enhanced selectivity and throughput, and excellent adsorption property, which have been contributed to the separation fields. In this comprehensive review, we summarize various designs and synthesized strategies of free-standing MOF and composite MOF-based membranes for water treatment. Special emphases are given not only on the effects of MOF on membrane performance, removal efficiencies, and elimination mechanisms, but also on the importance of MOF-based membranes for the applications of oily and micro-pollutant removal, adsorption, separation, and catalysis. The challenges and opportunities in the future for the industrial implementation of MOF-based membranes are also discussed.
Collapse
Affiliation(s)
- Huan Xu
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Shuyuan Chen
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Ye-Fan Zhao
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fangfang Wang
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Fan Guo
- School of art and design, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Kogularasu S, Lee YY, Sriram B, Wang SF, George M, Chang-Chien GP, Sheu JK. Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202311806. [PMID: 37773568 DOI: 10.1002/anie.202311806] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.
Collapse
Affiliation(s)
- Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Yen-Yi Lee
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan)
| |
Collapse
|
3
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
4
|
Rashed AO, Huynh C, Merenda A, Rodriguez-Andres J, Kong L, Kondo T, Razal JM, Dumée LF. Dry-spun carbon nanotube ultrafiltration membranes tailored by anti-viral metal oxide coatings for human coronavirus 229E capture in water. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110176. [PMID: 37234558 PMCID: PMC10201849 DOI: 10.1016/j.jece.2023.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to ∼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to ∼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.
Collapse
Affiliation(s)
- Ahmed O Rashed
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Chi Huynh
- LINTEC OF AMERICA, INC. Nano-Science and Technology Center, 2900 E. Plano Pkwy. Suite 100, Plano, TX 75074, United States
| | - Andrea Merenda
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | | | - Lingxue Kong
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Takeshi Kondo
- LINTEC OF AMERICA, INC. Nano-Science and Technology Center, 2900 E. Plano Pkwy. Suite 100, Plano, TX 75074, United States
| | - Joselito M Razal
- Deakin University, Geelong, Institute for Frontier Materials, 3216 Waurn Ponds, Victoria, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|