1
|
Zaborova OV, Timoshenko VA, Nardin C, Filippov SK. New insights on the release and self-healing model of stimuli-sensitive liposomes. J Colloid Interface Sci 2023; 640:558-567. [PMID: 36878073 DOI: 10.1016/j.jcis.2023.02.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/29/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
The mixing of conventional and pH-sensitive lipids was exploited to design novel stimuli-responsive liposomes (fliposomes) that could be used for smart drug delivery. We deeply investigated the structural properties of the fliposomes and revealed the mechanisms that are involved in a membrane transformation during a pH change. From ITC experiments we observed the existence of a slow process that was attributed to lipid layers arrangement with changing pH. Moreover, we determined for the first time the pKa value of the trigger-lipid in an aqueous milieu that is drastically different from the methanol-based values reported previously in the literature. Furthermore, we studied the release kinetics of encapsulated NaCl and proposed a novel model of release that involves the physical fitting parameters that could be extracted from the release curves fitting. We have obtained for the first time, the values of pores self-healing times and were able to trace their evolution with changing pH, temperature, the amount of lipid-trigger.
Collapse
Affiliation(s)
- Olga V Zaborova
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russian Federation
| | - Vadim A Timoshenko
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russian Federation
| | - Corinne Nardin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Sergey K Filippov
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD Berkshire, United Kingdom.
| |
Collapse
|
2
|
Ruyonga MR, Mendoza O, Browne M, Samoshin VV. Exploration of
trans
‐2‐(azaarylsulfanyl)‐cyclohexanols as potential pH‐triggered conformational switches. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mulinde R. Ruyonga
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Oscar Mendoza
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Michael Browne
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Vyacheslav V. Samoshin
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| |
Collapse
|
3
|
Zaborova OV. Determination of Kinetic Parameters of Salt Release from Solid Anionic Fliposomes. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Imelbaeva KM, Stepanova DA. Unexpected Influence of the Neutral Lipid Nature on pH-Regulated Release of Salt from the Anionic Fliposomes. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s107036322004026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Veremeeva PN, Grishina IV, Zaborova OV, Averin AD, Palyulin VA. Synthesis of 3,7-diacyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane derivatives as promising lipid bilayer modifiers. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Sybachin AV, Lokova AY, Spiridonov VV, Novoskol’tseva OA, Shtykova EV, Samoshin VV, Migulin VA, Yaroslavov AA. The Effect of Cationic Polylysine on the Release of an Encapsulated Substance from pH-Sensitive Anionic Liposomes. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Pinguet CE, Ryll E, Steinschulte AA, Hoffmann JM, Brugnoni M, Sybachin A, Wöll D, Yaroslavov A, Richtering W, Plamper FA. PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes. PLoS One 2019; 14:e0210898. [PMID: 30653618 PMCID: PMC6336312 DOI: 10.1371/journal.pone.0210898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a strategy to counteract the salt-driven disassembly of multiliposomal complexes made by electrostatic co-assembly of anionic small unilamellar liposomes and cationic star-shaped polyelectrolytes (made of quaternized poly(dimethylaminoethyl methacrylate) (qPDMAEMA100)3.1). The combined action of (qPDMAEMA100)3.1 and a nonionic star-shaped polymer (PEO12-b-PPO45)4, which comprises diblock copolymer arms uniting a poly(ethylene oxide) PEO inner block and a poly(propylene oxide) PPO terminal block, leads to a stabilization of these complexes against disintegration in saline solutions. Hereby, the anchoring of the PPO terminal blocks to the lipid bilayer and the bridging between several liposomes are at the origin of the promoted structural stability. Two-focus fluorescence correlation spectroscopy verifies the formation of multiliposomal complexes with (PEO12-b-PPO45)4. The polyelectrolyte and the amphiphilic polymer work synergistically, as the joint action still assures some membrane integrity, which is not seen for the mere (PEO12-b-PPO45)4-liposome interaction alone.
Collapse
Affiliation(s)
- Camille E. Pinguet
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Esther Ryll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | | | - Jón M. Hoffmann
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Monia Brugnoni
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Andrey Sybachin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Alexander Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
8
|
|
9
|
Papagiannopoulos A. Bovine serum albumin interactions with cationic surfactant vesicles decorated by a low-molar-mass polysaccharide. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane - a structure-activity relationship study. Chem Phys Lipids 2017; 210:129-141. [PMID: 29111431 DOI: 10.1016/j.chemphyslip.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023]
Abstract
Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches ("flipids") that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports "lipid tail conformational shortening" as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
11
|
Interactions in the multicomponent system comprising polycationic gel, star-shaped polyanion and cationic surfactants. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Vdovchenko AA, Hubina AV, Vlakh EG, Tennikova TB. Self-assembled polymer particles based on thermoresponsive biodegradable copolymers of amino acids. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Samoshin VV, Zheng Y, Liu X. Trans
-2-Aminocyclohexanol derivatives as pH-triggered conformational switches. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vyacheslav V. Samoshin
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| | - Yu Zheng
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| |
Collapse
|
15
|
Self-assembly strategy for the design of soft nanocontainers with controlled properties. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|