1
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharova LY. Role of Polyanions and Surfactant Head Group in the Formation of Polymer-Colloid Nanocontainers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1072. [PMID: 36985966 PMCID: PMC10056398 DOI: 10.3390/nano13061072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components. It was expected that the transition from a single surfactant solution to an admixture with PE might provide synergetic effects on structural characteristics and functional activity. To test this assumption, the concentration thresholds of aggregation, dimensional and charge characteristics, and solubilization capacity of amphiphiles in the presence of PEs have been determined by tensiometry, fluorescence and UV-visible spectroscopy, and dynamic and electrophoretic light scattering. RESULTS The formation of mixed surfactant-PAA aggregates with a hydrodynamic diameter of 100-180 nm has been shown. Polyanion additives led to a decrease in the critical micelle concentration of surfactants by two orders of magnitude (from 1 mM to 0.01 mM). A gradual increase in the zeta potential of HAS-surfactant systems from negative to positive value indicates that the electrostatic mechanism contributes to the binding of components. Additionally, 3D and conventional fluorescence spectroscopy showed that imidazolium surfactant had little effect on HSA conformation, and component binding occurs due to hydrogen bonding and Van der Waals interactions through the tryptophan amino acid residue of the protein. Surfactant-polyanion nanostructures improve the solubility of lipophilic medicines such as Warfarin, Amphotericin B, and Meloxicam. PERSPECTIVES Surfactant-PE composition demonstrated beneficial solubilization activity and can be recommended for the construction of nanocontainers for hydrophobic drugs, with their efficacy tuned by the variation in surfactant head group and the nature of polyanions.
Collapse
|
2
|
Ya. Zakharova L, Vasilieva EA, Mirgorodskaya AB, Zakharov SV, Pavlov RV, Kashapova NE, Gaynanova GA. Hydrotropes: solubilization of nonpolar compounds and modification of surfactant solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Patel B, Singh S, Parikh K, Chavda V, Ray D, Aswal VK, Kumar S. Micro-Environment mapping of mole fraction inspired contrasting charged aqueous gemini micelles: A drug solubilization/release study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Effect of electrolytes on aggregation behavior and solubilization properties of hexadecylpiperidinium surfactants. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Morozova JE, Myaldzina CR, Voloshina AD, Lyubina AP, Amerhanova SK, Syakaev VV, Ziganshina AY, Antipin IS. Сalixresorcine cavitands bearing lipophilic cationic fragments in the construction of mitochondrial-targeting supramolecular nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Kushnazarova RA, Mirgorodskaya AB, Mikhailov VA, Belousova IA, Zubareva TM, Prokop’eva TM, Voloshina AD, Amerhanova SK, Zakharova LY. Dicationic Imidazolium Surfactants with a Hydroxyl Substituent in the Spacer Fragment. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222040077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Kushnazarova RA, Mirgorodskaya AB, Kuznetsov DM, Tyryshkina AA, Voloshina AD, Gumerova SK, Lenina OA, Nikitin EN, Zakharova LY. Modulation of aggregation behavior, antimicrobial properties and catalytic activity of piperidinium surfactants by modifying their head group with a polar fragment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Stimulus-sensitive liposomal delivery system based on new 3,7-diazabicyclo[3.3.1]nonane derivatives. Bioorg Med Chem Lett 2021; 39:127871. [PMID: 33662539 DOI: 10.1016/j.bmcl.2021.127871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022]
Abstract
3,7-Diazabicyclo[3.3.1]nonane scaffold can serve as a basis for the design of molecular switches stimulating the fast release of water soluble compounds under the influence of external factors from the liposomal containers having those switches incorporated into the lipid bilayer. It was demonstrated that liposomes having 3,7-dihexadecyl-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (3) incorporated into the liposomal membrane sharply increase the permeability upon pH decrease from 7.4 to 6.5, and compound 3 can serve as a pH-sensitive agent in the bilayer of liposomal nanocontainers. Similar but less pronounced effect was shown for liposomes modified with 3,7-bis(methyldodecylaminoacetyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane (5) and 3,7-didodecylsulfonyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-one (4). The structure (morphology) and size of modified liposomes were studied with scanned transmission electron microscopy.
Collapse
|
12
|
Sybachin AV, Stepanova DA. Modification of Multiliposomal Nanocontainers with Albumin as a Method for Increasing Their Resistance to Enzymatic Hydrolysis. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
A novel salt-responsive hydrogel on the base of calixresorcinarene–mPEG amide conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mirgorodskaya AB, Valeeva FG, Kushnazarova RA, Lukashenko SS, Zakharova LY. Catalytic Effect of Micellar Systems Based on Hydroxypiperidinium Surfactants in the Hydrolysis of a p-Nitrophenyl Phosphonate. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158420060099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Mirgorodskaya AB, Kuznetsova DA, Kushnazarova RA, Gabdrakhmanov DR, Zhukova NA, Lukashenko SS, Sapunova AS, Voloshina AD, Sinyashin OG, Mamedov VA, Zakharova LY. Soft nanocarriers for new poorly soluble conjugate of pteridine and benzimidazole: Synthesis and cytotoxic activity against tumor cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Kushnazarova RA, Mirgorodskaya AB, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Kadirov MK, Zakharova LY. Novel cationic surfactants with cleavable carbamate fragment: Tunable morphological behavior, solubilization of hydrophobic drugs and cellular uptake study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Synthesis of Ag-AgCl nanoparticles capped by calix[4]resorcinarene-mPEG conjugate and their antimicrobial activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Mixed Micellar Solutions of Hexadecylpiperidinium Surfactants and Tween 80: Aggregation Behavior and Solubilizing Properties. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420090198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Vorob'ev M, Sinitsyna O. Degradation and assembly of β-casein micelles during proteolysis by trypsin. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mirgorodskaya АB, Kushnazarova RА, Lukashenko SS, Nikitin EN, Sinyashin KO, Nesterova LM, Zakharova LY. Carbamate-bearing surfactants as effective adjuvants promoted the penetration of the herbicide into the plant. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Shumatbaeva AM, Morozova JE, Syakaev VV, Shalaeva YV, Sapunova AS, Voloshina AD, Gubaidullin AT, Bazanova OB, Babaev VM, Nizameev IR, Kadirov MK, Antipin IS. The pH-responsive calix[4]resorcinarene-mPEG conjugates bearing acylhydrazone bonds: Synthesis and study of the potential as supramolecular drug delivery systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Self-assembly of mixed systems based on nonionic and carbamate-bearing cationic surfactants as a tool for fabrication of biocompatible nanocontainers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Shumatbaeva AM, Morozova JE, Shalaeva YV, Gubaidullin AT, Saifina AF, Syakaev VV, Bazanova OB, Sapunova AS, Voloshina AD, Nizameev IR, Kadirov MK, Konovalov AI. The novel calix[4]resorcinarene-PEG conjugate: Synthesis, self-association and encapsulation properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Vagapova LI, Burilova EA, Strelnik AG, Burilov AR, Pudovik MA. Novel advances in the synthesis of bisphosphonates, containing heterocyclic and macrocyclic structure. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1540003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Liliya I. Vagapova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Evgeniya A. Burilova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Anna G. Strelnik
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Alexander R. Burilov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Michael A. Pudovik
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
26
|
Synthesis, self-assembly and the effect of the macrocyclic platform on thermal properties of lactic acid oligomer modified by p-tert-butylthiacalix[4]arene. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Ibatullina MR, Zhil´tsova EP, Lukashenko SS, Kovalenko VI, Vandyukova II, Kutyreva MP, Zakharova LY. Mixed micellar systems of metal complexes of alkylated N-methyl-d-glucamines with hexadecyltrimethylammonium bromide. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2403-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Zakharova LY. Aggregation behavior and solubilization properties of 3-hydroxypiperidinium surfactants. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2388-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Singh S, Parikh K, Kumar S, Aswal V, Kumar S. Spacer nature and composition as key factors for structural tailoring of anionic/cationic mixed gemini micelles: Interaction and solubilization studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Pashirova TN, Zhukova NA, Lukashenko SS, Valeeva FG, Burilova EA, Sapunova AS, Voloshina AD, Mirgorodskaya AB, Zakharova LY, Sinyashin OG, Mamedov VA. Multi-targeted approach by 2-benzimidazolylquinoxalines-loaded cationic arginine liposomes against сervical cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 178:317-328. [PMID: 30884347 DOI: 10.1016/j.colsurfb.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Multi-targeted approaches for inhibition of сervical cancer cells in vitro were developed by implementing two different strategies and drug combination for creation of new therapeutic target agents and for nanotechnological-enhancement of intracellular delivery. New 2-benzimidazolylquinoxalines derivatives were synthesized and characterized by combining two different pharmacophores - benzimidazole and quinoxaline rings directly bonded in their structures. Spectrophotometric technique for determination of content of compounds in various media was developed to evaluate their solubility in water and micellar solutions of surfactants. The bioavailability of poorly water-soluble 2-benzimidazolylquinoxalines was improved by PEGylated liposomes as antitumor drug delivery carriers. 2-benzimidazolylquinoxalines-loaded PEGylated liposomes, with size close to 100 nm and negative zeta potential ranging from -13 mV to -27 mV, were time-stable at room temperature. The design of liposomal formulations for improving cellular uptake and in vitro antitumor efficacy was performed by modification of liposome surface with the new arginine surfactant. The cell viability of 2-benzimidazolylquinoxalines-loaded arginine liposomes on human cancer M-Hela cells was 16% at the concentration 0.15 mg/ml. Moreover, these liposomes showed a lower toxicity (40%) against normal human Gang liver cells both at the lowest and highest tested concentrations.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - Nataliya A Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Vakhid A Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
31
|
Pryazhnikov DV, Efanova OO, Kubrakova IV. Cerasomes containing magnetic nanoparticles: synthesis and gel-filtration chromatographic characterization. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Sulfobetaine derivatives of thiacalix[4]arene: synthesis and supramolecular self-assembly of submicron aggregates with AgI cations. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Mirgorodskaya AB, Kushnazarova RA, Zhukova NA, Mamedov VA, Zakharova LY, Sinyashin OG. Solubilization of Biologically Active Heterocyclic Compounds by Biocompatible Microemulsions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418120312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Mirgorodskaya AB, Kushnazarova RA, Nikitina AV, Semina II, Nizameev IR, Kadirov MK, Khutoryanskiy VV, Zakharova LY, Sinyashin OG. Polyelectrolyte nanocontainers: Controlled binding and release of indomethacin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Voloshina AD, Lenina OA, Zakharova LY, Sinyashin OG. Carbamate-bearing surfactants: Micellization, solubilization, and biological activity. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
|
38
|
Vorob’ev MM, Khomenkov VS, Sinitsyna OV, Levinskaya OA, Kitaeva DK, Kalistratova AV, Oshchepkov MS, Kovalenko LV, Kochetkov KA. Encapsulation of chlorine-containing carbamates in polypeptide nanoparticles prepared by enzymatic hydrolysis of casein. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Mirgorodskaya AB, Lukashenko SS, Kushnazarova RA, Kashapov RR, Zakharova LY, Sinyashin OG. Amphiphilic Compounds Containing a Carbamate Fragment: Synthesis, Aggregation, and Solubilizing Effect. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018070023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Solubilization of azo-dye-modified isatin derivative by amphiphilic carboxyresorcinarenes: The effect of macrocycle structure on the supramolecular association. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Konovalov AI. Nanoassociates of amphiphilic carboxy-calixresorcinarene and cetylpyridinuim chloride: The search of optimal macrocycle/surfactant molar ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Gaynanova GA, Valeeva FG, Kushnazarova RA, Bekmukhametova AM, Zakharov SV, Mirgorodskaya AB, Zakharova LY. Effect of Hydrotropic Compounds on the Self-Organization
and Solubilization Properties of Cationic Surfactants. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418070129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Sandzhieva AV, Sybachin AV, Zaborova OV, Ballauff M, Yaroslavov AA. Cationic colloid–anionic liposome–protein ternary complex: formation, properties, and biomedical importance. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Faingol’d II, Lozhkin AD, Smolina AV, Soldatova YV, Obraztsova NА, Kurmaz SV, Romanova VS, Shtol’ko VN, Kotel’nikova RA. Membranotropic properties of fullerene-containing amphiphilic (co)polymers of N-vinylpyrrolidone. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Yaroslavov AA, Efimova AA, Mulashkin FD, Rudenskaya GN, Krivtsov GG. Biodegradable liposome–chitosan complexes: enzyme-mediated release of encapsulated substances. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Sedyakina NE, Silaeva AO, Krivoshchepov AF, Avramenko GV. Preparation and properties of chitosan microspheres based on polyglycerol polyricinoleate stabilized emulsions. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Veremeeva PN, Bovina EM, Grishina IV, Lapteva VL, Palyulin VA, Zefirov NS. Synthesis of amphiphilic diacyl derivatives of 3,7-diazabicyclo[3.3.1]nonan-9-one. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Mirgorodskaya AB, Valeeva FG, Lukashenko SS, Kushnazarova RA, Prokop'eva TM, Zubareva TM, Mikhailov VA, Zakharova LY. Dicationic hydroxylic surfactants: Aggregation behavior, guest-host interaction and catalytic effect. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Zhiltsova EP, Pashirova TN, Ibatullina MR, Lukashenko SS, Gubaidullin AT, Islamov DR, Kataeva ON, Kutyreva MP, Zakharova LY. A new surfactant–copper(ii) complex based on 1,4-diazabicyclo[2.2.2]octane amphiphile. Crystal structure determination, self-assembly and functional activity. Phys Chem Chem Phys 2018; 20:12688-12699. [DOI: 10.1039/c8cp01954a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new complex [Cu(L)Br3] (where LBr is 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide) has been synthesized and characterized.
Collapse
Affiliation(s)
- Elena P. Zhiltsova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | - Marina R. Ibatullina
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | - Svetlana S. Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | - Daut R. Islamov
- Kazan (Volga Region) Federal University
- Kazan 420008
- Russian Federation
| | - Olga N. Kataeva
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| | | | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- Kazan
- Russian Federation
| |
Collapse
|