1
|
Wijfjes Z, Ramos Tomillero I, Le Gall CM, van Dinther EAW, Turlings F, Classens R, Manna S, van Dalen D, Peters RJRW, Schouren K, Fennemann FL, Hagemans IM, van Dalen FJ, van der Schoot JMS, Figdor CG, Esser-Kahn A, Scheeren FA, Verdoes M. Co-delivery of antigen and adjuvant by site-specific conjugation to dendritic cell-targeted Fab fragments potentiates T cell responses. RSC Chem Biol 2025:d5cb00014a. [PMID: 40343174 PMCID: PMC12057635 DOI: 10.1039/d5cb00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
The aim of therapeutic cancer vaccines is to induce tumor-specific cellular immune responses. This requires tumor antigens to be efficiently processed and presented by antigen-presenting cells, in particular dendritic cells (DCs). In addition, DCs require maturation to upregulate the surface expression and secretion of T cell costimulatory molecules, which is achieved by co-administration of adjuvants in vaccines. Peptide-based antigen vaccination is an attractive strategy due to the established biocompatibility of peptides as well as the dosing control. To enhance the efficacy of peptide-based vaccines, antigens can be targeted to DCs. Antigen-adjuvant conjugates are known to enhance T cell activation by ensuring DC maturation upon antigen delivery. In this study, we aim to combine these two approaches in a single molecule, and present a DC-targeted antibody fragment-antigen-adjuvant (AAA)-conjugate. We generate the AAA-conjugate through a combination of site-specific sortase-mediated chemoenzymatic ligation and click chemistry. Ex vivo T cell activation assays show enhanced efficacy of the AAA-conjugate compared to non-adjuvanted control conjugates. The in vivo performance of the AAA-conjugate was suboptimal, which we hypothesize to be a consequence of the hydrophobic character of the conjugate. In vivo efficacy was rescued by co-administration of antibody fragment-antigen conjugates and antibody fragment-adjuvant conjugates, in which the antigen and adjuvant were separatedly delivered using two different DC-targeting molecules. In conclusion, this study provides a proof-of-concept for effective in vivo antigen-specific T cell activation by targeted delivery of both antigen and adjuvant to DCs in a single or separate molecule using site-specific protein engineering.
Collapse
Affiliation(s)
- Zacharias Wijfjes
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | - Iván Ramos Tomillero
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Eric A W van Dinther
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Frederique Turlings
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- IMAGINE! Consortium Nijmegen The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Saikat Manna
- Pritzker School of Molecular Engineering, University of Chicago Chicago USA
| | - Duco van Dalen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Ruud J R W Peters
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Kayleigh Schouren
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Felix L Fennemann
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Iris M Hagemans
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
| | - Floris J van Dalen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | | | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago Chicago USA
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center Leiden The Netherlands
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen The Netherlands
- Institute for Chemical Immunology Nijmegen The Netherlands
- IMAGINE! Consortium Nijmegen The Netherlands
| |
Collapse
|
2
|
Alabugin IV, Eckhardt P, Christopher KM, Opatz T. The Photoredox Paradox: Electron and Hole Upconversion as the Hidden Secrets of Photoredox Catalysis. J Am Chem Soc 2024; 146:27233-27254. [PMID: 39316772 DOI: 10.1021/jacs.4c10422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Although photoredox catalysis is complex from a mechanistic point of view, it is also often surprisingly efficient. In fact, the quantum efficiency of a puzzlingly large portion of photoredox reactions exceeds 100% (i.e., the measured quantum yields (QYs) are >1). Hence, these photoredox reactions can be more than perfect with respect to photon utilization. In several documented cases, a single absorbed photon can lead to the formation of >100 molecules of the product, behavior known to originate from chain processes. In this Perspective, we explore the underlying reasons for this efficiency, identify the nature of common catalytic chains, and highlight the differences between HAT and SET chains. Our goal is to show why chains are especially important in photoredox catalysis and where the thermodynamic driving force that sustains the SET catalytic cycles comes from. We demonstrate how the interplay of polar and radical processes can activate hidden catalytic pathways mediated by electron and hole transfer (i.e., electron and hole catalysis). Furthermore, we illustrate how the phenomenon of redox upconversion serves as a thermodynamic precondition for electron and hole catalysis. After discussing representative mechanistic puzzles, we analyze the most common bond forming steps, where redox upconversion frequently occurs (and issometimes unavoidable). In particular, we highlight the importance of 2-center-3-electron bonds as a recurring motif that allows a rational chemical approach to the design of redox upconversion processes.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Vidyakina AA, Silonov SA, Govdi AI, Ivanov AY, Podolskaya EP, Balova IA, Bräse S, Danilkina NA. Key role of cycloalkyne nature in alkyne-dye reagents for enhanced specificity of intracellular imaging by bioorthogonal bioconjugation. Org Biomol Chem 2024; 22:7637-7642. [PMID: 38973457 DOI: 10.1039/d4ob01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Conjugates of benzothiophene-fused azacyclononyne BT9N-NH2 with fluorescent dyes were developed to visualise azidoglycans intracellularly. The significance of the cycloalkyne core was demonstrated by comparing new reagents with DBCO- and BCN-dye conjugates. To reduce non-specificity during intracellular bioconjugation using SPAAC, less reactive BT9N-dye reagents are preferred over highly reactive DBCO- and BCN-dye conjugates.
Collapse
Affiliation(s)
- Alexandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Sergey A Silonov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Alexander Yu Ivanov
- Center for Magnetic Resonance, Research Park, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia
| | | | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| |
Collapse
|
4
|
Hurst JM, Yadav R, Boeck PT, Ghiviriga I, Brantley CL, Dobrzycki Ł, Veige AS. Snapshot of cyclooctyne ring-opening to a tethered alkylidene cyclic polymer catalyst. Chem Sci 2024; 15:d4sc04411h. [PMID: 39282642 PMCID: PMC11391340 DOI: 10.1039/d4sc04411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Cyclooctyne reacts with the trianionic pincer ligand supported alkylidyne [ t BuOCO]WCC(CH3)3(THF)2 (1) to yield tungstacyclopropene (3) and tungstacyclopentadiene (4) complexes. The ratio of 3 and 4 in the reaction mixture depends on the stoichiometry of the reaction. The maximum concentration of 3 occurs with one equiv. of cyclooctyne and 4 is the exclusive product of the reaction above three equivalents. Both complexes 3 and 4 convert to the cyclooctyne ring-opened product 5 upon heating. While the conversion of 4 to 5 is accompanied by formation of polycyclooctyne as a white precipitate during the reaction, conversion of 3 to 5 is homogeneous. Exhibiting Ring Expansion Polymerization (REP), complexes 4 and 5 initiate the polymerization of phenylacetylene to generate cyclic poly(phenylacetylene) (c-PPA).
Collapse
Affiliation(s)
- Javier M Hurst
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
| | - Rinku Yadav
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
| | - Parker T Boeck
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Ion Ghiviriga
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - ChristiAnna L Brantley
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Łukasz Dobrzycki
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| | - Adam S Veige
- University of Florida, Department of Chemistry, Center for Catalysis P.O. Box 117200 Gainesville FL 32611 USA
- University of Florida, Department of Chemistry, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Sciences and Engineering Gainesville FL 32611 USA
| |
Collapse
|
5
|
Sterling AJ, Smith RC, Anderson EA, Duarte F. Beyond Strain Release: Delocalization-Enabled Organic Reactivity. J Org Chem 2024; 89:9979-9989. [PMID: 38970491 PMCID: PMC11267611 DOI: 10.1021/acs.joc.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
The release of strain energy is a fundamental driving force for organic reactions. However, absolute strain energy alone is an insufficient predictor of reactivity, evidenced by the similar ring strain but disparate reactivity of cyclopropanes and cyclobutanes. In this work, we demonstrate that electronic delocalization is a key factor that operates alongside strain release to boost, or even dominate, reactivity. This delocalization principle extends across a wide range of molecules containing three-membered rings such as epoxides, aziridines, and propellanes and also applies to strain-driven cycloaddition reactions. Our findings lead to a "rule of thumb" for the accurate prediction of activation barriers in such systems, which can be easily applied to reactions involving many of the strained building blocks commonly encountered in organic synthesis, medicinal chemistry, polymer science, and bioconjugation. Given the significance of electronic delocalization in organic chemistry, for example in aromatic π-systems and hyperconjugation, we anticipate that this concept will serve as a versatile tool to understand and predict organic reactivity.
Collapse
Affiliation(s)
- Alistair J. Sterling
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Chemistry & Biochemistry, The University
of Texas at Dallas, 800
W. Campbell Rad, Richardson, Texas 75080, United States
| | - Russell C. Smith
- Abbvie
Drug Discovery Science & Technology (DDST), 1 North Waukegan Road, North
Chicago, Illinois 60064, United States
| | - Edward A. Anderson
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
6
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
7
|
Mehak, Singh G, Singh R, Singh G, Stanzin J, Singh H, Kaur G, Singh J. Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Adv 2024; 14:7383-7413. [PMID: 38433942 PMCID: PMC10906366 DOI: 10.1039/d4ra00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Collapse
Affiliation(s)
- Mehak
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Riddima Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Jigmat Stanzin
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 Punjab India
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 Punjab India
| |
Collapse
|
8
|
Forshaw S, Parker JS, Scott WT, Knighton RC, Tiwari N, Oladeji SM, Stevens AC, Chew YM, Reber J, Clarkson GJ, Balasubramanian MK, Wills M. Increasing the versatility of the biphenyl-fused-dioxacyclodecyne class of strained alkynes. Org Biomol Chem 2024; 22:590-605. [PMID: 38131271 PMCID: PMC10792613 DOI: 10.1039/d3ob01712e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Biphenyl-fused-dioxacyclodecynes are a promising class of strained alkyne for use in Cu-free 'click' reactions. In this paper, a series of functionalised derivatives of this class of reagent, containing fluorescent groups, are described. Studies aimed at understanding and increasing the reactivity of the alkynes are also presented, together with an investigation of the bioconjugation of the reagents with an azide-labelled protein.
Collapse
Affiliation(s)
- Sam Forshaw
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - William T Scott
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, The University of Warwick, Coventry, CV4 7AL, UK
| | - Richard C Knighton
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
- School of Chemistry, University of Southampton, SO17 1BJ, UK
| | - Neelam Tiwari
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Samson M Oladeji
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Andrew C Stevens
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Yean Ming Chew
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, The University of Warwick, Coventry, CV4 7AL, UK
| | - Jami Reber
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| | | | - Martin Wills
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
9
|
Das E, Feliciano MAM, Yamanushkin P, Lin X, Gold B. Oxa-azabenzobenzocyclooctynes (O-ABCs): heterobiarylcyclooctynes bearing an endocyclic heteroatom. Org Biomol Chem 2023; 21:8857-8862. [PMID: 37881858 DOI: 10.1039/d3ob01559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report the synthesis of heterobiarylcyclooctynes bearing an endocyclic heteroatom, oxa-azabenzobenzocyclooctynes (O-ABCs). The integration of design strategies for accelerating strain-promoted azide-alkyne cycloadditions results in reactivity with organic azides that surpasses all cyclooctyne reagents reported to date. O-ABCs and related compounds provide insights into the effects of structural modifications on reactivity that can aid in the design of new reagents for click and bioorthogonal chemistry.
Collapse
Affiliation(s)
- Eshani Das
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Mark Aldren M Feliciano
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, 88003, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Pavel Yamanushkin
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry Florida State University, Tallahassee, FL, 32306, USA
| | - Brian Gold
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, 88003, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| |
Collapse
|
10
|
Vidyakina AA, Shtyrov AA, Ryazantsev MN, Khlebnikov AF, Kolesnikov IE, Sharoyko VV, Spiridonova DV, Balova IA, Bräse S, Danilkina NA. Development of Fluorescent Isocoumarin-Fused Oxacyclononyne - 1,2,3-Triazole Pairs. Chemistry 2023; 29:e202300540. [PMID: 37293937 DOI: 10.1002/chem.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Fluorescent isocoumarin-fused cycloalkynes, which are reactive in SPAAC and give fluorescent triazoles regardless of the azide nature, have been developed. The key structural feature that converts the non-fluorescent cycloalkyne/triazole pair to its fluorescent counterpart is the pi-acceptor group (COOMe, CN) at the C6 position of the isocoumarin ring. The design of the fluorescent cycloalkyne/triazole pairs is based on the theoretical study of the S1 state deactivation mechanism of the non-fluorescent isocoumarin-fused cycloalkyne IC9O using multi-configurational ab initio and DFT methodologies. The calculations revealed that deactivation proceeds through the electrocyclic ring opening of the α-pyrone cycle and is accompanied by a redistribution of electron density in the fused benzene ring. We proposed that the S1 excited state deactivation barrier could be increased by introducing a pi-acceptor group into a position that is in direct conjugation with the formed C=O group and has a reduced electron density in the transition state. As a proof of concept, we designed and synthesized two fluorescent isocoumarin-fused cycloalkynes IC9O-COOMe and IC9O-CN bearing pi-acceptors at the C6 position. The importance of the nature of a pi-acceptor group was shown by the example of much less fluorescent CF3 -substituted cycloalkyne IC9O-CF3 .
Collapse
Affiliation(s)
- Aleksandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Andrey A Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, Sankt-Peterburg, 194021 Saint Petersburg, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, Sankt-Peterburg, 194021 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Ilya E Kolesnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Dar'ya V Spiridonova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-, Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Sankt-Peterburg, 199034 Saint Petersburg, Russia
| |
Collapse
|
11
|
Anderson TE, Thamattoor DM, Phillips DL. Formation of 3-Oxa- and 3-Thiacyclohexyne from Ring Expansion of Heterocyclic Alkylidene Carbenes: A Mechanistic Study. Org Lett 2023; 25:1364-1369. [PMID: 36856659 PMCID: PMC10012261 DOI: 10.1021/acs.orglett.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 03/02/2023]
Abstract
The rearrangement pathways of two alkylidene carbenes appended to an oxa or thiacyclopentane into the corresponding heterocyclohexynes were elucidated using 13C-labeling experiments. Both carbenes exhibited a preference for migration of the allylic carbon bound to the heteroatom. Anomeric interactions involving a heteroatom lone pair and antibonding orbital of the migrating bond and inductive destabilization of the minor migratory pathway are discussed as plausible reasons for the observed trends.
Collapse
Affiliation(s)
- T. E. Anderson
- Department
of Chemistry, Colby College, 5765 Mayflower Hill, Waterville, Maine 04901, USA
| | - Dasan M. Thamattoor
- Department
of Chemistry, Colby College, 5765 Mayflower Hill, Waterville, Maine 04901, USA
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam 999077, Hong Kong S.A.R.
| |
Collapse
|
12
|
Holzmann MJ, Khanal N, Yamanushkin P, Gold B. Remote Strain Activation in a Sulfate-Linked Dibenzocycloalkyne. Org Lett 2023; 25:309-313. [PMID: 36455206 DOI: 10.1021/acs.orglett.2c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cycloalkynes and their utilization in cycloaddition reactions enable modular strategies spanning the molecular sciences. Strain─imparted by deviation from linearity─enables sufficient alkyne reactivity without the need for a catalyst (e.g., copper); however, the design and synthesis of stable reagents with suitable reactivity remains an ongoing challenge. We report the incorporation of an endocyclic sulfate within a dibenzocyclononyne scaffold to generate a cyclononyne displaying remarkable reactivity and stability. Through computational analyses, we revealed that the endocyclic sulfate group shares nearly half the total strain energy, providing an activation strategy that reduces alkyne bending. Rehybridization of alkyne carbons in the formation of the heterocyclic product relieves strain both at the reactive site and in the transannular sulfate group. This mode of remote activation enables rapid reactivity while minimizing distortion─and strain─at the reactive site (the alkyne). The result: a design strategy for a new class of cycloalkynes with increased stability and reactivity.
Collapse
Affiliation(s)
- Michael J Holzmann
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Namrata Khanal
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Pavel Yamanushkin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
Kang D, Wahl C, Kim J. Synthesis of push-pull-activated ynol ethers and their evaluation in the bioorthogonal hydroamination reaction. Org Biomol Chem 2022; 20:9217-9221. [PMID: 36367436 PMCID: PMC9769999 DOI: 10.1039/d2ob01917e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A new class of push-pull-activated alkynes featuring di- and trifluorinated ynol ethers was synthesized. The difluorinated ynol ether exhibited an optimal balance of stability and reactivity, displaying a substantially improved half-life in the presence of aqueous thiols over the previously reported 1-haloalkyne analogs while reacting just as fast in the hydroamination reaction with N,N-diethylhydroxylamine. The trifluorinated ynol ether reacted significantly faster, exhibiting a second order rate constant of 0.56 M-1 s-1 in methanol, but it proved too unstable toward thiols. These fluorinated ynol ethers further demonstrate the importance of the hyperconjugation-rehybridization effect in activating alkynes and demonstrate how substituent effects can both activate and stabilize alkynes for bioorthogonal reactivity.
Collapse
Affiliation(s)
- Dahye Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Conrad Wahl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | - Justin Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Yazdi MK, Sajadi SM, Seidi F, Rabiee N, Fatahi Y, Rabiee M, Dominic C.D. M, Zarrintaj P, Formela K, Saeb MR, Bencherif SA. Clickable Polysaccharides for Biomedical Applications: A Comprehensive Review. Prog Polym Sci 2022; 133:101590. [PMID: 37779922 PMCID: PMC10540641 DOI: 10.1016/j.progpolymsci.2022.101590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, 624, KRG, Iraq
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Midhun Dominic C.D.
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
15
|
Takahashi S, Frutos M, Baceiredo A, Madec D, Saffon‐Merceron N, Branchadell V, Kato T. Synthesis, Characterization and Reactivity of a σ-Donating Ni 0 -Stabilized Silyliumylidene Ion. Angew Chem Int Ed Engl 2022; 61:e202208202. [PMID: 35880424 PMCID: PMC9541621 DOI: 10.1002/anie.202208202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/09/2022]
Abstract
The synthesis of a silyliumylidene cation complex 2 stabilized by a Ni0 -based donating ligand is reported. Experimental and theoretical studies demonstrate that the highly electrophilic SiII center is stabilized by a dative Ni→Si σ-interaction and π-donations from the amino- and Ni-moieties. Due to the energetically close frontier orbitals localized on the Si and Ni atoms, complex 2 presents a competitive reactivity at Si and Ni sites.
Collapse
Affiliation(s)
- Shintaro Takahashi
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance) (Equipe—ECOIH
| | - María Frutos
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance) (Equipe—ECOIH
| | - Antoine Baceiredo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance) (Equipe—ECOIH
| | - David Madec
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance) (Equipe—ECOIH
| | - Nathalie Saffon‐Merceron
- Institut de Chimie de Toulouse (FR 2599)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance
| | - Vicenç Branchadell
- Departament de QuímicaUniversitat Autònoma de Barcelona08193BellaterraSpain
| | - Tsuyoshi Kato
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069)Université de Toulouse, CNRS118 route de Narbonne31062ToulouseFrance) (Equipe—ECOIH
| |
Collapse
|
16
|
Takahashi S, Frutos M, Baceiredo A, Madec D, Saffon-Merceron N, Branchadell V, Kato T. Synthesis, Characterization and Reactivity of a σ‐Donating Ni(0)‐Stabilized Silyliumylidene Ion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shintaro Takahashi
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier LHFA FRANCE
| | - María Frutos
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier LHFA FRANCE
| | - Antoine Baceiredo
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier LHFA FRANCE
| | - David Madec
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier LHFA FRANCE
| | - Nathalie Saffon-Merceron
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier Institut de Chimie de Toulouse FRANCE
| | - Vicenç Branchadell
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona Chemistry SPAIN
| | - Tsuyoshi Kato
- Universite de Toulouse 3: Universite Toulouse III Paul Sabatier Laboratoire de Hétérochimie Fondamentale et Appliquée UMR5069 118, route de NarbonneCedex 9 31062 Toulouse FRANCE
| |
Collapse
|
17
|
Alabugin I, Hu C. A Swiss Army knife for surface chemistry. Science 2022; 377:261-262. [DOI: 10.1126/science.abq2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voltage pulses offer a way to control single-molecule reactions on a surface
Collapse
Affiliation(s)
- Igor Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Rothman JH. Synthesis of Endocyclic Cycloalkyne Amino Acids. ACS OMEGA 2022; 7:9053-9060. [PMID: 35309419 PMCID: PMC8928491 DOI: 10.1021/acsomega.2c00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
"Click-ligation" is a widely adopted and valuable means to ligate biomolecules whereby two appended biologically inert moieties, such as alkynes and azides, link by cycloaddition. For terminal alkynes, Cu+1 catalysis is required which degrades oligonucleotides by catalyzing their hydrolysis but is also physiologically incompatible. The smallest activated alkynes that do not require Cu+1 catalysis are cyclooctynes or dibenzo-cyclooctynes. For this purpose, there are commercially available nucleosides and amino acids that are appended to these moieties. However, these structures are bulky, dissimilar to native amino acids, and when incorporated within biological molecules could likely perturb native structural configuration. Presented are the syntheses of structural analogues of proline with an inserted propargyl moiety within a series of ring sizes. Moreover, a synthetic pathway to medium-size ring heterocycloalkynes mediated by using mild Mitsunobu conditions in tandem with a Nicholas-related strategy for cyclization is introduced. Avoiding the usual harsh acidic conditions for the Nicholas reaction allows improved functional group compatibility.
Collapse
Affiliation(s)
- Jeffrey H. Rothman
- Herbert
Irving Comprehensive Cancer Center, Department of Medicine, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
19
|
Yamanushkin P, Kaya K, Feliciano MAM, Gold B. SuFExable NH-Pyrazoles via 1,3-Dipolar Cycloadditions of Diazo Compounds with Bromoethenylsulfonyl Fluoride. J Org Chem 2022; 87:3868-3873. [PMID: 35143195 DOI: 10.1021/acs.joc.1c03105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Click" reactions have transformed the molecular sciences. Augmenting cycloaddition reactions, sulfur(VI) fluoride exchange (SuFEx) chemistry has diversified the landscape of molecular assembly. Herein, we report a facile strategy to access SuFExable NH-pyrazoles via strain and catalyst-free 1,3-dipolar cycloadditions of stabilized diazo compounds under mild conditions. Subsequent SuFEx proceeds efficiently with various N- and O-nucleophiles. Access to SuFExable NH-pyrazoles─a class of compounds containing two common pharmacophores─enables future opportunities within drug discovery, chemical biology, materials chemistry, and related fields.
Collapse
Affiliation(s)
- Pavel Yamanushkin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kemal Kaya
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Biochemistry, Kütahya Dumlupınar University, 43100 Kütahya, Turkey
| | - Mark Aldren M Feliciano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
20
|
Sarkar SK, Ko M, Bai X, Du L, Thamattoor DM, Phillips DL. Detection of Ylide Formation between an Alkylidenecarbene and Acetonitrile by Femtosecond Transient Absorption Spectroscopy. J Am Chem Soc 2021; 143:17090-17096. [PMID: 34618473 DOI: 10.1021/jacs.1c07074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Femtosecond laser flash photolysis of 3-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-ylidene)tetrahydrofuran produces singlet 3-oxacyclopentylidenecarbene which reacts with acetonitrile solvent to form an ylide. This is the first direct detection of ylide formation by an alkylidenecarbene. This new type of ylide was observed to have a broad absorption band in the visible region with λmax ∼450 nm and a lifetime of ∼13.5 ps. As with other "conventional" carbenes (the divalent carbon atom is separately bound to two substituents), this ylide formation method could be also useful for detecting alkylidenecarbenes, especially those that do not absorb at wavelengths suitable for direct observation. Furthermore, the mechanisms by which 3-oxacyclopentylidenecarbene forms the ylide and the overall favorability of ylide formation, vis-à-vis ring expansion of the carbene to strained 3-oxacyclohexyne, were supported by results from density functional theory calculations.
Collapse
Affiliation(s)
- Sujan K Sarkar
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R
| | - Minji Ko
- Department of Chemistry, Colby College, Waterville, Maine 04901, United States
| | - Xueqin Bai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R.,School of Life Science, Jiangsu University, Zhenjiang 212013, PR China
| | - Dasan M Thamattoor
- Department of Chemistry, Colby College, Waterville, Maine 04901, United States
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R
| |
Collapse
|
21
|
Danilkina NA, Govdi AI, Khlebnikov AF, Tikhomirov AO, Sharoyko VV, Shtyrov AA, Ryazantsev MN, Bräse S, Balova IA. Heterocycloalkynes Fused to a Heterocyclic Core: Searching for an Island with Optimal Stability-Reactivity Balance. J Am Chem Soc 2021; 143:16519-16537. [PMID: 34582682 DOI: 10.1021/jacs.1c06041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the search for fundamentally new, active, stable, and readily synthetically accessible cycloalkynes as strain-promoted azide-alkyne cycloaddition (SPAAC) reagents for bioorthogonal bioconjugation, we integrated two common approaches: the reagent destabilization by the increase of a ring strain and the transition state stabilization through electronic effects. As a result new SPAAC reagents, heterocyclononynes fused to a heterocyclic core, were created. These compounds can be obtained through a general synthetic route based on four crucial steps: the electrophile-promoted cyclization, Sonogashira coupling, Nicholas reaction, and final deprotection of Co-complexes of cycloalkynes from cobalt. Varying the natures of the heterocycle and heteroatom allows for reaching the optimal stability-reactivity balance for new strained systems. Computational and experimental studies revealed similar SPAAC reactivities for stable 9-membered isocoumarin- and benzothiophene-fused heterocycloalkynes and their unstable 8-membered homologues. We discovered that close reactivity is a result of the interplay of two electronic effects, which stabilize SPAAC transition states (πin* → σ* and π* → πin*) with structural effects such as conformational changes from eclipsed to staggered conformations in the cycloalkyne scaffold, that noticeably impact alkyne bending and reactivity. The concerted influence of a heterocycle and a heteroatom on the polarization of a triple bond in highly strained cycles along with a low HOMO-LUMO gap was assumed to be the reason for the unpredictable kinetic instability of all the cyclooctynes and the benzothiophene-fused oxacyclononyne. The applicability of stable isocoumarin-fused azacyclononyne IC9N-BDP-FL for in vitro bioconjugation was exemplified by labeling and visualization of HEK293 cells carrying azido-DNA and azido-glycans.
Collapse
Affiliation(s)
- Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander O Tikhomirov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Andrey A Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 Saint Petersburg, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
22
|
Dones JM, Abularrage NS, Khanal N, Gold B, Raines RT. Acceleration of 1,3-Dipolar Cycloadditions by Integration of Strain and Electronic Tuning. J Am Chem Soc 2021; 143:9489-9497. [PMID: 34151576 PMCID: PMC11753763 DOI: 10.1021/jacs.1c03133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The 1,3-dipolar cycloaddition between azides and alkynes provides new means to probe and control biological processes. A major challenge is to achieve high reaction rates with stable reagents. The optimization of alkynyl reagents has relied on two strategies: increasing strain and tuning electronics. We report on the integration of these strategies. A computational analysis suggested that a CH → N aryl substitution in dibenzocyclooctyne (DIBO) could be beneficial. In transition states, the nitrogen of 2-azabenzo-benzocyclooctyne (ABC) engages in an n→π* interaction with the C=O of α-azidoacetamides and forms a hydrogen bond with the N-H of α-diazoacetamides. These dipole-specific interactions act cooperatively with electronic activation of the strained π-bond to increase reactivity. We found that ABC does indeed react more quickly with α-azidoacetamides and α-diazoacetamides than its constitutional isomer, dibenzoazacyclooctyne (DIBAC). ABC and DIBAC have comparable chemical stability in a biomimetic solution. Both ABC and DIBO are accessible in three steps by the alkylidene carbene-mediated ring expansion of commercial cycloheptanones. Our findings enhance the accessibility and utility of 1,3-dipolar cycloadditions and encourage further innovation.
Collapse
Affiliation(s)
- Jesús M. Dones
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nile S. Abularrage
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Namrata Khanal
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Abstract
Cyclopentadiene is one of the most reactive dienes in normal electron-demand Diels-Alder reactions. The high reactivities and yields of cyclopentadiene cycloadditions make them ideal as click reactions. In this review, we discuss the history of the cyclopentadiene cycloaddition as well as applications of cyclopentadiene click reactions. Our emphasis is on experimental and theoretical studies on the reactivity and stability of cyclopentadiene and cyclopentadiene derivatives.
Collapse
Affiliation(s)
- Brian J. Levandowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Singha M, Bhattacharya P, Ray D, Basak A. Sterically hindering the trajectory of nucleophilic attack towards p-benzynes by a properly oriented hydrogen atom: an approach to achieve regioselectivity. Org Biomol Chem 2021; 19:5148-5154. [PMID: 34032259 DOI: 10.1039/d1ob00521a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleophilic addition to p-benzynes derived via Bergman cyclization has become a topic of keen interest. Studying the regioselectivity in such addition can reveal important information regarding the parameters controlling such addition. Recently, high regioselectivity has been achieved in nucleophilic addition to a p-benzyne derived from an ortho substituted benzo fused cyclic azaenediyne. Rather than having a freely rotating substitution, a rigid hydrogen atom coming from a suitable naptho fused enediyne and residing in the plane of the p-benzyne ring can offer hindrance to the trajectory of the nucleophile. This can lead to regioselectivity provided the other side remains relatively free of such hindrance. Based on that approach, halide addition to p-benzynes derived from naphtho fused cyclic azaenediynes was studied and a high level of regioselectivity was observed. Steric hindrance to the trajectory of nucleophile by the bay hydrogen was found to be the main cause of such regioselectivity; however, differential electrostatic potential as well as distortions at reactive centres have a minor role in controlling the regioselectivity. The products of such high yielding addition are the halo naphtho tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Monisha Singha
- Department of Chemistry, Indian Institute of Technology, Kharagpur721302, India.
| | | | - Debashis Ray
- Department of Chemistry, Indian Institute of Technology, Kharagpur721302, India.
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur721302, India. and School of Bioscience, Indian Institute of Technology, Kharagpur721302, India
| |
Collapse
|
25
|
Zhang G, Alshreimi AS, Alonso L, Antar A, Yu H, Islam SM, Anderson LL. Nitrone and Alkyne Cascade Reactions for Regio‐ and Diastereoselective 1‐Pyrroline Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guanqun Zhang
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Abdullah S. Alshreimi
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Laura Alonso
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Alan Antar
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Hsien‐Cheng Yu
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Shahidul M. Islam
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Laura L. Anderson
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| |
Collapse
|
26
|
Zhang G, Alshreimi AS, Alonso L, Antar A, Yu HC, Islam SM, Anderson LL. Nitrone and Alkyne Cascade Reactions for Regio- and Diastereoselective 1-Pyrroline Synthesis. Angew Chem Int Ed Engl 2021; 60:13089-13097. [PMID: 33763941 DOI: 10.1002/anie.202101511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Indexed: 12/22/2022]
Abstract
The synthesis of 1-pyrrolines from N-alkenylnitrones and alkynes has been explored as a retrosynthetic alternative to traditional approaches. These cascade reactions are formal [4+1] cycloadditions that proceed through a proposed dipolar cycloaddition and N-alkenylisoxazoline [3,3']-sigmatropic rearrangement. A variety of cyclic alkynes and terminal alkynes have been shown to undergo the transformation with N-alkenylnitrones under mild conditions to provide the corresponding spirocyclic and densely substituted 1-pyrrolines with high regio- and diastereoselectivity. Mechanistic studies provide insight into the balance of steric and electronic effects that promote the cascade process and control the diastereo- and regioisomeric preferences of the 1-pyrroline products. Diastereoselective derivatization of the 1-pyrrolines prepared by the cascade reaction demonstrate the divergent synthetic utility of the new method.
Collapse
Affiliation(s)
- Guanqun Zhang
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Abdullah S Alshreimi
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Laura Alonso
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Alan Antar
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Hsien-Cheng Yu
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Laura L Anderson
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
27
|
Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021; 143:6634-6648. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stable bridged azaozonides can be selectively assembled via a catalyst-free three-component condensation of 1,5-diketones, hydrogen peroxide, and an NH-group source such as aqueous ammonia or ammonium salts. This procedure is scalable and can produce gram quantities of bicyclic stereochemically rich heterocycles. The new azaozonides are thermally stable and can be stored at room temperature for several months without decomposition and for at least 1 year at -10 °C. The chemical stability of azaozonides was explored for their subsequent selective transformations including the first example of an aminoperoxide rearrangement that preserves the peroxide group. The amino group in aminoperoxides has remarkably low nucleophilicity and does not participate in the usual amine alkylation and acylation reactions. These observations and the 15 pKa units decrease in basicity in comparison with a typical dialkyl amine are attributed to the strong hyperconjugative nN→σ*C-O interaction with the two antiperiplanar C-O bonds. Due to the weakness of the complementary nO→σ*C-N donation from the peroxide oxygens (a consequence of "inverse α-effect"), this interaction depletes electron density from the NH moiety, protects it from oxidation, and makes it similar in properties to an amide.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Street, 119991 Moscow, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russian Federation
| |
Collapse
|
28
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Escorihuela J, Looijen WJE, Wang X, Aquino AJA, Lischka H, Zuilhof H. Cycloaddition of Strained Cyclic Alkenes and Ortho-Quinones: A Distortion/Interaction Analysis. J Org Chem 2020; 85:13557-13566. [PMID: 33105075 PMCID: PMC7656516 DOI: 10.1021/acs.joc.0c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
chemistry of strained unsaturated cyclic compounds has experienced
remarkable growth in recent years via the development of metal–free
click reactions. Among these reactions, the cycloaddition of cyclopropenes
and their analogues to ortho-quinones has been established
as a highly promising click reaction. The present work investigates
the mechanism involved in the cycloaddition of strained dienes to ortho-quinones and structural factors that would influence
this reaction. For this purpose, we use B97D density functional theory
calculations throughout, and for relevant cases, we use spin component–scaled
MP2 calculations and single–point domain-based local pair natural
orbital coupled cluster (DLPNO-CCSD(T)) calculations. The outcomes
are analyzed in detail using the distortion/interaction model, and
suggestions for future experimental work are made.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departament de Quı́mica Orgànica, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Wilhelmus J E Looijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Xiao Wang
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Smeenk MLWJ, Agramunt J, Bonger KM. Recent developments in bioorthogonal chemistry and the orthogonality within. Curr Opin Chem Biol 2020; 60:79-88. [PMID: 33152604 DOI: 10.1016/j.cbpa.2020.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/09/2023]
Abstract
The emergence of bioorthogonal reactions has greatly advanced research in the fields of biology and medicine. They are not only valuable for labeling, tracking, and understanding biomolecules within living organisms, but also important for constructing advanced bioengineering and drug delivery systems. As the systems studied are increasingly complex, the simultaneous use of multiple bioorthogonal reactions is equally desirable. In this review, we take a look at the different bioorthogonal reactions that have recently been developed, the methods of cellular incorporation and the strategies to create orthogonality within the bioorthogonal landscape.
Collapse
Affiliation(s)
- Mike L W J Smeenk
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jordi Agramunt
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
31
|
Sahharova LT, Gordeev EG, Eremin DB, Ananikov VP. Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P. Ananikov
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
32
|
Saadat K, Villar López R, Shiri A, Nieto Faza O, Silva López C. The effect of solvation in torquoselectivity: ring opening of monosubstituted cyclobutenes. Org Biomol Chem 2020; 18:6287-6296. [PMID: 32734984 DOI: 10.1039/d0ob01229g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The paradigmatic electrocyclic ring opening of monosubstituted cyclobutenes has been used to diagnose possible solvation effects tuning the torquoselectivity observed in these reactions. This kind of selectivity in electrocyclic reactions is mostly due to strong orbital interactions, particularly when they involve powerful electron donors and acceptors, which also combine with usually milder steric effects. Orbital interactions are established between the cleaving C-C bond and the HOMO/LUMO of the EDG/EWG substituent. This implies that the larger torquoselectivity-featuring substrates may also suffer stronger solvation effects due to the higher polarity imposed by the substituent. This premise is tested and the source of solvation effects as a consequence of substitution analyzed.
Collapse
Affiliation(s)
- Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Roberto Villar López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| |
Collapse
|
33
|
Zeng Q, He C, Zhou S, Dong K, Qiu L, Xu X. Dirhodium(II)‐Catalyzed Cyclopropanation of Alkyne‐Containing α‐Diazoacetates for the Synthesis of Cycloalkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Ciwang He
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Kuiyong Dong
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Lihua Qiu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
| | - Xinfang Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 People's Republic of China
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
34
|
Xue YY, Zhang Y, Cui ZH, Ding YH. Globally stabilized bent carbon-carbon triple bond by hydrogen-free inorganic-metallic scaffolding Al 4F 6. RSC Adv 2020; 10:25275-25280. [PMID: 35517486 PMCID: PMC9055247 DOI: 10.1039/d0ra02280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/16/2020] [Indexed: 11/21/2022] Open
Abstract
For over 100 years, known bent C[triple bond, length as m-dash]C compounds have been limited to those with organic (I) and all-carbon (II) scaffoldings. Here, we computationally report a novel type (III) of bent C[triple bond, length as m-dash]C compound, i.e., C2Al4F6-01, which is the energetically global minimum isomer and bears an inorganic-metallic scaffolding and unexpected click reactivity.
Collapse
Affiliation(s)
- Ying-Ying Xue
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University Changchun 130023 P. R. China
| | - Ying Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University Changchun 130023 P. R. China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 P. R. China
| | - Yi-Hong Ding
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University Changchun 130023 P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China
| |
Collapse
|
35
|
Danilkina NA, D'yachenko AS, Govdi AI, Khlebnikov AF, Kornyakov IV, Bräse S, Balova IA. Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin. J Org Chem 2020; 85:9001-9014. [PMID: 32506914 DOI: 10.1021/acs.joc.0c00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.
Collapse
Affiliation(s)
- Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander S D'yachenko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ilya V Kornyakov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
36
|
Domingo LR, Acharjee N. Unravelling the strain-promoted [3+2] cycloaddition reactions of phenyl azide with cycloalkynes from the molecular electron density theory perspective. NEW J CHEM 2020. [DOI: 10.1039/d0nj02711a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increase of the strain not only increases the reaction rate and the exothermic character of these reactions, but also changes the mechanism for the small cycloalkynes from a non-polar to a polar reaction.
Collapse
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry
- University of Valencia
- E-46100 Valencia
- Spain
| | | |
Collapse
|
37
|
Danilkina NA, Vasileva AA, Balova IA. A.E.Favorskii’s scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alexei Evgrafovich Favorskii was an outstanding organic chemist who left a great scientific legacy as a result of long time and fruitful work. Most of the theoretically and practically important discoveries of A.E.Favorskii were made in the chemistry of acetylene and its derivatives. Nowadays, the reactions discovered by him, which include acetylene – allene isomerization, the Favorskii and retro-Favorskii reactions, the Favorskii rearrangement and the vinylation reaction, are widely used in industry and in laboratory synthesis. This review summarizes the main scientific achievements of A.E.Favorskii, as well as their development in modern organic chemistry. Much consideration is given to acetylene – allene isomerization as a convenient method for the synthesis of methyl-substituted acetylenes and to the acetylene zipper reaction as a synthetic tool for obtaining terminal acetylenes. The review presents examples of the application of these reactions in modern organic synthesis of complex molecules, including natural compounds and their analogues.
The bibliography includes 266 references.
Collapse
|
38
|
Zeng Q, Dong K, Pei C, Dong S, Hu W, Qiu L, Xu X. Divergent Construction of Macrocyclic Alkynes via Catalytic Metal Carbene C(sp2)–H Insertion and the Buchner Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kuiyong Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shanliang Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
39
|
Harris T, Chenoweth DM. Sterics and Stereoelectronics in Aza-Glycine: Impact of Aza-Glycine Preorganization in Triple Helical Collagen. J Am Chem Soc 2019; 141:18021-18029. [DOI: 10.1021/jacs.9b05524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trevor Harris
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
40
|
Forshaw S, Knighton RC, Reber J, Parker JS, Chmel NP, Wills M. A strained alkyne-containing bipyridine reagent; synthesis, reactivity and fluorescence properties. RSC Adv 2019; 9:36154-36161. [PMID: 35540623 PMCID: PMC9074932 DOI: 10.1039/c9ra06866j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
We report the synthesis of a bipyridyl reagent containing a strained alkyne, which significantly restricts its flexibility. Upon strain-promoted alkyne-azide cycloaddition (SPAAC) with an azide, which does not require a Cu catalyst, the structure becomes significantly more flexible and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further. The reagent has the potential to act as a fluorescent labelling agent with azide-containing substrates, including biological molecules. A bipyridyl reagent containing a strained alkyne 7, reacts with benzyl azide to give a significantly more flexible product 10 and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further.![]()
Collapse
Affiliation(s)
- Sam Forshaw
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | | - Jami Reber
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | - Jeremy S. Parker
- Early Chemical Development, Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca
- Macclesfield
- UK
| | | | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| |
Collapse
|