1
|
Kasi B, Ojha B, Liaw WF, Hung CH. Expanding the Chemistry of Pentafluorophenyl-N-Confused Porphyrin: Diketonate Substitution and Derivatizations at the External 3-C Position of the Inverted Pyrrole Ring. ACS ORGANIC & INORGANIC AU 2024; 4:681-691. [PMID: 39649988 PMCID: PMC11621957 DOI: 10.1021/acsorginorgau.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 12/11/2024]
Abstract
In this study, we synthesized two new 3-C-substituted pentafluorophenyl-N-confused porphyrins (PFNCPs), one with acetylacetonate (PFNCP-acac, 2a) and the other with ylidene-2-propanone (PFNCP-ac, 3a), through a one-pot reaction in the absence of a catalyst. Under mild acidic and heating conditions, the acac-substituted compound underwent acyl cleavage degradation, yielding ac-substituted product 3a. Subsequent chelation of the acac-substituted PFNCP with BF2 resulted in a boron diketonate derivative, PFNCP-acacBF2 (4). Additionally, an electrocyclic reaction of the ac-substituted PFNCP 3a, without a catalyst, produced a tricyclic fused [6,6,5]-TF-PFNCP (5). This tricyclic product could also be obtained directly from PFNCP-acac 2a under heating conditions. The absorption spectra revealed that acac- and ac-substituted macrocycles exhibit either a single or split Soret band, respectively, in the 400-550 nm range, along with multiple Q bands spanning the 580-690 nm region. While BF2 derivatization caused a slight red shift in the absorption spectra, the [6,6,5]-tricyclic fused NCP demonstrated a significant red shift. All newly synthesized compounds were characterized by using single-crystal X-ray structures, 1H NMR spectroscopy, and mass spectrometry. Density functional theory (DFT) studies were conducted to elucidate the photophysical properties of these macrocycles.
Collapse
Affiliation(s)
- Bhakyaraj Kasi
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115201, Taiwan
| | - Belarani Ojha
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115201, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chen-Hsiung Hung
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115201, Taiwan
| |
Collapse
|
2
|
Electrochemical synthesis and properties of polyporphyrin films based on 5,10,15,20-tetra(4-pyridyl)porphyrin. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Polivanovskaia DA, Konstantinova AN, Birin KP, Sokolov VS, Batishchev OV, Gorbunova YG. Peripheral Groups of Dicationic Pyrazinoporphyrins Regulate Lipid Membrane Binding. MEMBRANES 2022; 12:membranes12090846. [PMID: 36135866 PMCID: PMC9505865 DOI: 10.3390/membranes12090846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/02/2023]
Abstract
Photodynamic therapy (PDT) is a widely used technique for skin cancer treatment and antimicrobial therapy. An improvement in PDT efficiency requires not only an increase in quantum yield of photosensitizer (PS) molecules but also their applicability for biological systems. Recently, we demonstrated that the activity of porphyrin-based PSs in the lipid membrane environment depends on the nature of the cation in the macrocycle due to its interactions with the lipid phosphate moiety, as well as the orientation of the PS molecules inside the membrane. Here, we report the synthesis, membrane binding properties and photodynamic efficiency of novel dicationic free-base, Ni(II) and Zn(II) pyrazinoporphyrins with terminal tetraalkylammonium units (2H-1, Ni-1 and Zn-1), to show the possibility to enhance the membrane binding of PS molecules, regardless of the central cation. All of these substances adsorb at the lipid membrane, while free-base and Zn(II) porphyrins actively generate singlet oxygen (SO) in the membranes. Thus, this study reveals a new way to tune the PDT activity of PSs in biological membranes through designing the structure of the peripheral groups in the macrocyclic photosensitizer.
Collapse
Affiliation(s)
- Daria A. Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr., 119991 Moscow, Russia
| |
Collapse
|
4
|
Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V. Advances in the Synthesis and Bio-Applications of Pyrazine Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dimple Choudhary
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Meenakshi Verma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
5
|
Polivanovskaia DA, Birin KP, Averin AA, Gorbunova YG, Tsivadze AY. Photocatalytic activity of pyrazinoporphyrin in the presence of gold nanoparticles and nanoclusters. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Birin KP, Abdulaeva IA, Polivanovskaya DA, Sinel’shchikova AA, Demina LI, Baranchikov AE, Gorbunova YG, Tsivadze AY. Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abdulaeva IA, Birin KP, Polivanovskaia DA, Gorbunova YG, Tsivadze AY. Functionalized heterocycle-appended porphyrins: catalysis matters. RSC Adv 2020; 10:42388-42399. [PMID: 35516736 PMCID: PMC9057987 DOI: 10.1039/d0ra08603g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
The scope and limitations of the condensation of labile 2,3-diaminoporphyrin derivatives with aromatic aldehydes to provide functionalized imidazole- and pyrazine-appended porphyrins were investigated in detail. The presence of an acidic catalyst in the reaction was found to be a tool that allows the reaction path to be switched. The influence of the electronic origin of the substituents in the carbonyl components of the condensation on the yields and selectivity of the reaction was revealed. Metal-promoted cross-coupling transformations were found to be convenient for the further targeted construction of functional derivatives based on the prepared bromo-substituted pyrazinoporphyrins. Overall, these strategies provide a versatile technique for the elaboration of a variety of functionalized heterocycle-appended porphyrins for further application in the development of hybrid materials.
Collapse
Affiliation(s)
- Inna A Abdulaeva
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Kirill P Birin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Daria A Polivanovskaia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
| | - Yulia G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS Leninsky pr., 31 Moscow 119991 Russia
| | - Aslan Yu Tsivadze
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS Leninsky pr., 31, building 4 Moscow 119071 Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS Leninsky pr., 31 Moscow 119991 Russia
| |
Collapse
|