1
|
Elneairy MAA, Youssef EGN, Ebrahim SAA, Mohammad NEM, Abd El-Rahman NMS, Elhewaty ASM, Sanad SMH, Mekky AEM. MRSA Inhibitory Activity of Some New Pyrazolo[1,5-a]pyrimidines Linked to Arene and/or Furan or Thiophene Units. Chem Biodivers 2025; 22:e202402031. [PMID: 39284766 DOI: 10.1002/cbdv.202402031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to hospital-acquired infections and is highly resistant to treatment. Ongoing research focuses on developing new antimicrobial medications to prevent the spread of resistance. A facile method was employed to efficiently synthesize new pyrazolo[1,5-a]pyrimidines in 84-93 % yields by reacting 4-benzyl-1H-pyrazole-3,5-diamine with the respective α,β-unsaturated ketones. The reaction was carried out in ethanol containing 1.2 equivalents of potassium hydroxide at reflux for 5-6 h. The new products are attached to a para-substituted aryl group with variable electronic properties at pyrazolopyrimidine-C5, in addition to one of three units at C7, namely phenyl, thiophen-2-yl, or furan-2-yl units. A wide spectrum of antibacterial activity was displayed by the new pyrimidines against six different bacterial strains. In general, pyrimidines attached to furan-2-yl units at C7, in addition to another aryl unit at C5, attached to 4-Me or 4-OMe groups, demonstrate significant antibacterial activity, particularly against S. aureus strain. They had MIC/MBC of 2.5/5.1 and 2.4/4.9 μM, respectively, which exceeded that of ciprofloxacin. Moreover, they demonstrate more effective MRSA inhibitory activity than linezolid, with MIC/MBC values up to 4.9/19.7 and 2.4/19.7 μM against MRSA ATCC:33591 and ATCC:43300 strains, respectively.
Collapse
Affiliation(s)
| | - Emad G N Youssef
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sama A A Ebrahim
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nour E M Mohammad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Ahmed S M Elhewaty
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Sanad SMH, Mekky AEM. Three-component regioselective synthesis and antibacterial evaluation of new arene-linked bis(pyrazolo[1,5- a]pyrimidine) hybrids. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2191854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Mekky AEM, Sanad SMH. Microwave-assisted synthesis of nicotinonitrile and/or arene-linked bis(chromene-thiazoles) as new VRE and MRSA inhibitors. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2144378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
4
|
Sanad SMH, Mekky AEM. Ultrasound‐Mediated Synthesis of New (Piperazine‐Chromene)‐Linked Bis(thieno[2,3‐
b
]pyridine) Hybrids as Potential Anti‐acetylcholinesterase. ChemistrySelect 2022. [DOI: 10.1002/slct.202203020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sherif M. H. Sanad
- Chemistry Department Faculty of Science Cairo University Giza 12613 Egypt
| | - Ahmed E. M. Mekky
- Chemistry Department Faculty of Science Cairo University Giza 12613 Egypt
| |
Collapse
|
5
|
Mekky A, El-Idreesy TT, Sanad SMH. Chloramine Trihydrate-mediated Tandem Synthesis of New Pyrrole and/or Arene-linked Mono- and Bis(1,3,4-oxadiazole) Hybrids as Potential Bacterial Biofilm and MRSA Inhibitors. Chem Biodivers 2022; 19:e202200338. [PMID: 35818907 DOI: 10.1002/cbdv.202200338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
A two-step tandem protocol was used to prepare new pyrrole and/or arene-linked bis(1,3,4-oxadiazoles) as well as their mono-analogues. The appropriate aldehydes and benzohydrazides were first condensed in ethanol at 80 °C to yield the corresponding N-benzoylhydrazones. Without isolation, the previous intermediates were subjected to a chloramine trihydrate-mediated oxidative cyclization in DMSO at 180 °C to yield the target molecules. The antibacterial potency of the (pyrrole-arene)-linked hybrids exceeded the arene-linked hybrids, and the bis(1,3,4-oxadiazoles) exceeded their mono-analogues against six different ATCC strains. Furthermore, the antibacterial efficacy of bis(1,3,4-oxadiazoles) 11c, and 11f, which are linked to pyrrole, and (p-tolylthio)methyl units, was highest against S. aureus, E. coli, and P. aeruginosa strains. Their MIC ranged between 3.8 and 3.9 µM, while their MBC values ranged between 7.7 and 15.8 µM. Additionally, they showed promising bacterial biofilm inhibitory activity against the same strains tested, with IC50 values ranging from 4.7 to 5.3 μM. They were also effective against MRSA ATCC:33591, and ATCC:43300 strains, with MIC, and MBC values ranging from 3.8-7.9 and 7.7-15.8 μM, respectively. When tested against the MCF-10A cell line, hybrids 11c, and 11f are cytotoxic at concentrations that are more than 6 and 13-fold higher than their MIC values against the S. aureus, E. coli, and P. aeruginosa strains, respectively. This lends support to both hybrids' potential as safe antibacterial agents.
Collapse
Affiliation(s)
- Ahmed Mekky
- Cairo University Faculty of Science, Chemistry, Giza, 12613, Giza, EGYPT
| | - Tamer T El-Idreesy
- Cairo University Faculty of Science, Chemistry, Giza, 12613, Giza, EGYPT
| | - Sherif M H Sanad
- Cairo University Faculty of Science, Chemistry, Giza, 12613, Giza, EGYPT
| |
Collapse
|
6
|
Abdelfattah AM, Mekky AEM, Sanad SMH. Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2095211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
7
|
Metwally NH, Koraa TH, Sanad SMH. Green one-pot synthesis and in vitro antibacterial screening of pyrano[2,3- c]pyrazoles, 4 H-chromenes and pyrazolo[1,5- a]pyrimidines using biocatalyzed pepsin. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2074301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Sanad SMH, Mekky AEM. 3-Aminopyrazolo[3,4-b]pyridine: Effective Precursor for Barium Hydroxide-Mediated Three Components Synthesis of New Mono- and Bis(pyrimidines) with Potential Cytotoxic Activity. Chem Biodivers 2021; 19:e202100500. [PMID: 34784450 DOI: 10.1002/cbdv.202100500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023]
Abstract
In this study, an efficient one-pot procedure for preparing a new series of pyrazolo[3,4-b]pyridine-fused pyrimidines was described. The target hybrids were developed through a three-component reaction of 3-amino-1H-pyrazolo[3,4-b]pyridine, benzaldehydes, and acetophenones (molar ratio 1 : 1 : 1). The best conditions for the previous reaction were 2.5 equivalents of barium hydroxide in DMF at 150 °C for 6 h. New bis(pyrimidines) were synthesized in high yields using a similar one-pot reaction protocol with some modifications. Thus, two equivalents of each of the appropriate acetophenones and 3-aminopyrazolopyridine were reacted with one equivalent of the appropriate bis(aldehydes). The reaction was carried out at 150 °C for 8 h using 4.5 equivalents of barium hydroxide in DMF. Repeating the previous reaction with the appropriate bis(acetyl) derivatives and benzaldehydes resulted in good yields of the target bis(pyrimidines). The in vitro cytotoxic activity of new pyrimidines against the MCF-7, HEPG2, and Caco2 cell lines was evaluated using the reference doxorubicin (IC50 values of 4.34-6.97 μM). Hybrid 6h had the best activity against Caco2 and MCF-7 cell lines, IC50 values of 12.62 and 14.50 μM, respectively. The IC50 values for hybrids 6c, 6e, and 6f against MCF-7 and Caco2 cell lines were 23.99-41.69 and 33.14-43.33 μM, respectively. Furthermore, hybrid 6e displayed IC50 value of 20.06 μM HEPG2 cell lines, while the hybrids 6c, 6f and 6h exhibited IC50 values ranging between 26.29-50.51 μM. Furthermore, hybrid 6e had an IC50 value of 20.06 μM for the HEPG2 cell lines, whereas hybrids 6c, 6f, and 6h had IC50 values ranging from 26.29 to 50.51 μM.
Collapse
Affiliation(s)
- Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|