1
|
Yang B, Shi C, Tang Y, Luo Z, Wang X, Xie T, Ji J, Shan J. Integrated untargeted and targeted lipidomics discovers LPE 16:0 as a protector against respiratory syncytial virus infection. J Pharm Biomed Anal 2024; 250:116399. [PMID: 39151296 DOI: 10.1016/j.jpba.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute lower respiratory infections, imposing a substantial burden on healthcare systems globally. While lipid disorders have been observed in the lungs of infants and young children with RSV pneumonia, the specific characterization of these lipids and their roles in the development and progression of RSV pneumonia remain largely unexplored. To address this tissue, we established a non-targeted high-resolution lipidomics platform using UHPLC-Q-Exactive-MS to analyze lipid profiles in bronchoalveolar lavage fluid (BALF) obtained from mice infected with RSV. Through the lipidomics analysis, a total of 72 lipids species were identified, with 40 lipids were significantly changed. Notably, the primary changes were observed in ether phospholipids and lysophospholipids. Furthermore, a targeted lipidomics analysis utilizing UHPLC-QQQ-MS/MS was developed to specifically assess the levels of lysophospholipids, including lysophosphocholine 16:0 (LPC 16:0), lysophosphoethanolamine 16:0 (LPE 16:0) and lysophosphoglycerol 16:0 (LPG 16:0), in RSV-infected mice compared to control mice. Animal experiments revealed that LPE 16:0, rather than LPC 16:0 or LPG 16:0, provided protection against RSV-induced weight loss, reduced lung viral load, regulated immune cells and mitigated lung injury in mice afflicted with RSV pneumonia. In summary, our findings suggested that the host responses to RSV infection pathology are closely with various lipid metabolic. Additionally, our results elucidated novel biological functions of LPE 16:0 and offering new avenues for drug development against RSV pneumonia.
Collapse
Affiliation(s)
- Bin Yang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Shi
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Tang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuan Wang
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tong Xie
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Children's Health and Chinese Medicine, State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Tharp WG, Morris CR, Santos-Ortega Y, Vary CP, Bender SP, Dixon AE. Magnitude of obesity alone does not alter the alveolar lipidome. Am J Physiol Lung Cell Mol Physiol 2024; 327:L615-L623. [PMID: 39254086 PMCID: PMC11563641 DOI: 10.1152/ajplung.00112.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Obesity may lead to pulmonary dysfunction through complex and incompletely understood cellular and biochemical effects. Altered lung lipid metabolism has been identified as a potential mechanism of lung dysfunction in obesity. Although murine models of obesity demonstrate changes in pulmonary surfactant phospholipid composition and function, data in humans are lacking. We measured untargeted shotgun lipidomes in two bronchoalveolar lavages (BALs) from apical and anteromedial pulmonary subsegments of 14 adult subjects (7 males and 7 females) with body mass indexes (BMIs) ranging from 24.3 to 50.9 kg/m2. The lipidome composition was characterized at the class, species, and fatty acyl/alkyl level using total lipid molecular ion signal intensities normalized to BAL protein concentration and epithelial lining fluid volumes. Multivariate analyses were conducted to identify potential changes with increasing BMI. The alveolar lipidomes contained the expected composition of surfactant-associated phospholipids, sphingolipids, and sterols in addition to cardiolipin and intracellular signaling lipid species. No significant differences in lipidomes were detected between the two BAL regions. Though a small number of lipid species were associated with BMI in multivariate analyses, no robust differences in lipidome composition or specific lipid species were identified over the range of body habitus. The magnitude of obesity alone does not substantially alter the alveolar lipidome in patients without lung disease. Differences in lung function in patients with obesity and no lung disease are unlikely related to changes in alveolar lipid composition.NEW & NOTEWORTHY Altered lung lipid metabolism has been identified as a potential mechanism of lung dysfunction in obesity, but data in humans are lacking. We measured the alveolar lipidome in bronchoalveolar lavages from subjects with healthy lungs with a wide range of body mass index. There were no differences in lipidome composition in association with the magnitude of obesity. In patients with healthy lungs, obesity alone does not alter the alveolar lipidome.
Collapse
Affiliation(s)
- William G Tharp
- Department of Anesthesiology, University of Vermont, Burlington, Vermont, United States
| | - Carolyn R Morris
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Yulica Santos-Ortega
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Calvin P Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
- University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, United States
- School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - S Patrick Bender
- Department of Anesthesiology, University of Vermont, Burlington, Vermont, United States
| | - Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
3
|
Yahyazadeh Shourabi A, Kieffer R, de Jong D, Tam D, Aubin-Tam ME. Mechanical characterization of freestanding lipid bilayers with temperature-controlled phase. SOFT MATTER 2024; 20:8524-8537. [PMID: 39417217 DOI: 10.1039/d4sm00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Coexistence of lipid domains in cell membranes is associated with vital biological processes. Here, we investigate two such membranes: a multi-component membrane composed of DOPC and DPPC lipids with gel and fluid separated domains, and a single component membrane composed of PMPC lipids forming ripples. We characterize their mechanical properties below their melting point, where ordered and disordered regions coexist, and above their melting point, where they are in fluid phase. To conduct these inquiries, we create lipid bilayers in a microfluidic chip interfaced with a heating system and optical tweezers. The chip features a bubble trap and enables high-throughput formation of planar bilayers. Optical tweezers experiments reveal interfacial hydrodynamics (fluid-slip) and elastic properties (membrane tension and bending rigidity) at various temperatures. For PMPC bilayers, we demonstrate a higher fluid slip at the interface in the fluid-phase compared to the ripple phase, while for the DOPC:DPPC mixture, similar fluid slip is measured below and above the transition point. Membrane tension for both compositions increases after thermal fluidization. Bending rigidity is also measured using the forces required to extend a lipid nanotube pushed out of the freestanding membranes. This novel temperature-controlled microfluidic platform opens numerous possibilities for thermomechanical studies on freestanding planar membranes.
Collapse
Affiliation(s)
- Arash Yahyazadeh Shourabi
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Roland Kieffer
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Djanick de Jong
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Daniel Tam
- Laboratory for Aero and Hydrodynamics, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD, Delft, The Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
4
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The input of chemical and physical sciences to life sciences is increasingly important. Surface science as a complex multidisciplinary research area provides many relevant practical tools to support research in medicine. The tensiometry and surface rheology of human biological liquids as diagnostic tools have been very successfully applied. Additionally, for the characterization of pulmonary surfactants, this methodology is essential to deepen the insights into the functionality of the lungs and for the most efficient administration of certain drugs. Problems in ophthalmology can be addressed using surface science methods, such as the stability of the wetting films and the development of artificial tears. The serious problem of obesity is fast-developing in many industrial countries and must be better understood, while therapies for its treatment must also be developed. Finally, the application of fullerenes as a suitable system for detecting cancer in humans is discussed.
Collapse
|