1
|
Peng M, Zhang Y, Weng X, Wu J, Luo T, Dong Y, Wen S, Liang N, Zhong L, Zhai Y, Xie Y, Xie Y, Chen Y. Thiamine and METTL14 in Diabetes Management with Intensive Insulin Therapy. Biomedicines 2025; 13:980. [PMID: 40299682 PMCID: PMC12024880 DOI: 10.3390/biomedicines13040980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Epigenetic regulation plays a critical role in diabetes research, with N6-methyladenosine (m6A) modification emerging as a key factor in disease progression. METTL14, an essential epigenetic regulator, may influence the effects of thiamine on intensive insulin therapy in diabetic patients. Methods: Blood samples from twenty diabetic patients were collected before and after intensive insulin therapy for MeRIP-seq and RNA-seq analysis. Genes with m6A modifications and corresponding mRNAs were identified and functionally analyzed using Gene Ontology (GO) and KEGG pathway analysis. RT-qPCR was used to confirm the overexpression of METTL14, PIK3R1, TPK1, and IPMK, while METTL14 overexpression was further validated in THP1 cells. Results: GO analysis revealed a significant enrichment of overlapping genes in metabolic pathways. A reduction in m6A modification levels was observed post intensive insulin therapy, indicating METTL14's involvement in regulating TPK1, IPMK, and PIK3R1 expression. TPK1 levels showed a positive correlation with thiamine levels. Clinical validation demonstrated that combining thiamine with insulin therapy significantly reduced glucose and triglyceride levels compared to insulin alone. Conclusions: Thiamine supplementation alongside intensive insulin therapy offers therapeutic potential by downregulating TPK1 expression and mitigating lipid-related complications in diabetic patients. These findings highlight the pivotal role of METTL14-mediated m6A modification in regulating key metabolic genes during diabetes treatment.
Collapse
Affiliation(s)
- Miaoguan Peng
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (M.P.); (Y.X.)
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510170, China
- Department of Endocrinology, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510170, China
| | - Yingying Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China;
| | - Xiaoshi Weng
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (X.W.); (T.L.); (Y.D.)
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China;
| | - Taizhen Luo
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (X.W.); (T.L.); (Y.D.)
| | - Yanmei Dong
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (X.W.); (T.L.); (Y.D.)
| | - Shiyun Wen
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (S.W.); (N.L.); (Y.Z.)
| | - Naifeng Liang
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (S.W.); (N.L.); (Y.Z.)
| | - Liangying Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China;
| | - Yaojie Zhai
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (S.W.); (N.L.); (Y.Z.)
| | - Yijuan Xie
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (M.P.); (Y.X.)
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China;
| | - Yuyi Chen
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; (X.W.); (T.L.); (Y.D.)
| |
Collapse
|
2
|
Zhang X, Shan A, Chen J, Cao Y, Jiang X. Mettl3 deficiency leads to impaired insulin secretion via regulating Ire1a of mature β-cells in mice. Sci Rep 2025; 15:10835. [PMID: 40155600 PMCID: PMC11953400 DOI: 10.1038/s41598-025-93799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
The modification of N6-methyladenosine (m6A) influences the translation and stability of transcripts, allowing for the coordination of gene regulation during cell state maintenance and transition. Deregulation of components in the m6A regulatory network is associated with glucose homeostasis and development of diabetes. In this study, we investigated the functional role of Mettl3, which is the key component of the m6A methyltransferase complex, in regulating β-cell identity and function in two pancreatic β-cell-specific Mettl3 knockout mouse models. The glucose metabolic phenotype, β-cell proliferation, islet architecture and insulin secretion were analyzed in vivo. We next analyzed the expression levels of genes associated with endoplasmic reticulum (ER) stress in the Mettl3 ablated islets. MeRIP-qPCR was applied to detect the m6A modification enrichment of Ire1α mRNA. Adenovirus-mediated Mettl3 infection was performed on islets to explore the effect of Mettl3 overexpression on ER stress and insulin secretion. Our results showed that Mettl3 deficiency led to loss of β-cell identity and impaired insulin secretion in mice. Depletion of Mettl3 verified the m6A modification in Ire1α and consequently induced ER stress in islet cells. Mettl3 overexpression in islets could alleviate ER stress and improve the insulin secretion capacity. Our findings demonstrated that Mettl3 was an important regulator of ER stress and insulin secretion in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Research Unit of Clinical and Basic Research on Metabolic Diseases of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Research Unit of Clinical and Basic Research on Metabolic Diseases of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Research Unit of Clinical and Basic Research on Metabolic Diseases of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Research Unit of Clinical and Basic Research on Metabolic Diseases of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Ruijin Yangtze River Delta Health Institute, Wuxi Branch of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Research Unit of Clinical and Basic Research on Metabolic Diseases of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Yan L, Guo L. The role and mechanism of m6A methylation in diabetic nephropathy. Life Sci 2025; 363:123355. [PMID: 39778764 DOI: 10.1016/j.lfs.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g., METTL3), erasers (e.g., FTO, ALKBH5) and readers (e.g., YTHDF2), which play important roles in DN. Writers are responsible for introducing m6A modifications on RNAs, erasers remove m6A modifications and readers recognize and bind m6A-modified RNAs to regulate RNAs functions, such as mRNA stability, translation and localization. In DN, abnormal m6A modification may promote kidney injury and proteinuria by regulating key pathways involved in multiple processes, including lipid metabolism and inflammatory response, in kidney cells such as podocytes. Therefore, an in-depth study of the role and mechanism of m6A methylation that are regulated by "writers", "erasers" and "readers" in DN is expected to provide new targets and strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
4
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
6
|
Zhou L, Zhang L, Lv Y, Qian J, Huang L, Qu C. YTHDC1 inhibits autophagy-dependent NF-κB signaling by stabilizing Beclin1 mRNA in macrophages. J Inflamm (Lond) 2024; 21:22. [PMID: 38877444 PMCID: PMC11179287 DOI: 10.1186/s12950-024-00393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND YTHDC1, a key m(6)A nuclear reader, plays a crucial role in regulating mRNA splicing, export, and stability. However, the functional significance and regulatory mechanisms of YTHDC1 in inflammatory bowel disease (IBD) remain to be explored. METHODS We established a dextran sulfate sodium (DSS)-induced murine colitis model in vivo and LPS/IFN-γ-stimulated macrophage inflammation in vitro. The expression of YTHDC1 was determined. Colocalization of YTHDC1 and macrophages was assayed by immunofluorescence staining. LV-YTHDC1 or shYTHDC1 lentiviruses were applied for YTHDC1 overexpression or inhibition. For NF-κB inhibition, JSH-23 was utilized. The interaction of YTHDC1 and Beclin1 mRNA was determined by RIP, and the m6A modification of Beclin1 was confirmed by MeRIP. RESULTS In DSS-induced colitis and LPS/IFN-γ-treated RAW264.7 macrophages, we observed a significant downregulation of YTHDC1. Overexpression of YTHDC1 resulted in decreased levels of iNOS, CD86, and IL-6 mRNA, along with inhibited NF-κB activation in LPS/IFN-γ-treated RAW264.7 cells. Conversely, downregulation of YTHDC1 promoted iNOS expression and inhibited autophagy. Additionally, the effect of YTHDC1 knockdown on CD86 and IL-6 mRNA induced by LPS/IFN-γ was abolished by the NF-κB inhibitor JSH-23. Mechanistically, YTHDC1 interacted with Beclin1 mRNA, thereby stabilizing Beclin1 mRNA and enhancing Beclin1 expression and autophagy. These effects ultimately led to the inhibition of NF-κB signaling in LPS/IFN-γ-challenged macrophages. CONCLUSIONS YTHDC1 inhibited the macrophage-mediated inflammatory response by stabilizing Beclin1 mRNA, which may be a potential therapeutic target for the treatment of IBD.
Collapse
Affiliation(s)
- Li Zhou
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China
| | - Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China
| | - Yan Lv
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China
| | - Jiasheng Qian
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China
| | - Long Huang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China.
| | - Chenjiang Qu
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68 West Jiyang Road, Suzhou, 215600, China.
| |
Collapse
|
7
|
Liu X, Wang N, Gu S, He Z. Changes of RNA m 6A/m 5C Modification Regulatory Molecules in Ferroptosis of T2DM Rat Pancreas. Cell Biochem Biophys 2024; 82:1279-1289. [PMID: 38709441 DOI: 10.1007/s12013-024-01282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
N6-methyladenine (m6A) and 5-methylcytosine (m5C) are two common forms of RNA methylation that play an important role in the epigenetics of type 2 diabetes mellitus (T2DM). One type of cell death, ferroptosis, has been implicated in islet β-cell damage in T2DM. Notably, RNA methylation, an upstream regulatory mechanism of mRNAs, can regulate the expression of ferroptosis signaling molecules, thereby affecting cell proliferation and death. Here, we found that the ferroptosis signaling pathway was activated in pancreas of T2DM rats, followed by significant changes in m6A/m5C modification regulatory molecules. These detection data together with the prediction results that m6A and m5C exist in the mRNAs of ferroptosis molecules, we speculate that m6A and m5C are probably involved in pancreatic cell damage by modifying of ferroptosis signaling molecules. In short, our findings provide a new research idea for future studies on the molecular mechanisms of pancreatic cell damage and point to a new direction for exploring the mechanisms of ferroptosis from the perspective of RNA methylation modification.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Nan Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, Yunnan, China.
| |
Collapse
|
8
|
Han F. N6-methyladenosine modification in ischemic stroke: Functions, regulation, and therapeutic potential. Heliyon 2024; 10:e25192. [PMID: 38317953 PMCID: PMC10840115 DOI: 10.1016/j.heliyon.2024.e25192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
N6-methyladenosine (m6A) modification is the most frequently occurring internal modification in eukaryotic RNAs. By modulating various aspects of the RNA life cycle, it has been implicated in a wide range of pathological and physiological processes associated with human diseases. Ischemic stroke is a major cause of death and disability worldwide with few treatment options and a narrow therapeutic window, and accumulating evidence has indicated the involvement of m6A modifications in the development and progression of this type of stroke. In this review, which provides insights for the prevention and clinical treatment of stroke, we present an overview of the roles played by m6A modification in ischemic stroke from three main perspectives: (1) the association of m6A modification with established risk factors for stroke, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and heart disease; (2) the roles of m6A modification regulators and their functional regulation in the pathophysiological injury mechanisms of stroke, namely oxidative stress, mitochondrial dysfunction, endothelial dysfunction, neuroinflammation, and cell death processes; and (3) the diagnostic and therapeutic potential of m6A regulators in the treatment of stroke.
Collapse
Affiliation(s)
- Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
9
|
Cheng C, Yu F, Yuan G, Jia J. Update on N6-methyladenosine methylation in obesity-related diseases. Obesity (Silver Spring) 2024; 32:240-251. [PMID: 37989724 DOI: 10.1002/oby.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/23/2023]
Abstract
Obesity is a chronic metabolic disease that is closely related to type 2 diabetes mellitus, cardiovascular diseases, nonalcoholic fatty liver disease, obstructive sleep apnea, and osteoarthritis. The prevalence of obesity is increasing rapidly every year and is recognized as a global public health problem. In recent years, the role of epigenetics in the development of obesity and related diseases has been recognized and is currently a research hotspot. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification in the eukaryotic RNA, including mRNA and noncoding RNA. Several studies have shown that the m6A modifications in the target mRNA and the corresponding m6A regulators play a significant role in lipid metabolism and are strongly associated with the pathogenesis of obesity-related diseases. In this review, the latest research findings regarding the role of m6A methylation in obesity and related metabolic diseases are summarized. The authors' aim is to highlight evidence that suggests the clinical utility of m6A modifications and the m6A regulators as novel early prediction biomarkers and precision therapeutics for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fan Yu
- Department of Endocrinology and Metabolism, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
10
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Ren Y, Li Z, Li J, Liang R, Wang Z, Bai Y, Yang Y, Tang Q, Fu Y, Zhang X, Zhang Y, Yu Y, Xiong Y. m 6 A mRNA methylation: Biological features, mechanisms, and therapeutic potentials in type 2 diabetes mellitus. Obes Rev 2023; 24:e13639. [PMID: 37732463 DOI: 10.1111/obr.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023]
Abstract
As the most common internal post-transcriptional RNA modification in eukaryotic cells, N6-methyladenosine (m6 A) performs a dynamic and reversible role in a variety of biological processes mediated by methyltransferases (writers), demethylases (erasers), and m6 A binding proteins (readers). M6 A methylation enables transcriptome conversion in different signals that regulate various physiological activities and organ development. Over the past few years, emerging studies have identified that mRNA m6 A regulators defect in β-cell leads to abnormal regulation of the target mRNAs, thereby resulting in β-cell dysfunction and loss of β-cell identity and mass, which are strongly associated with type 2 diabetes mellitus (T2DM) pathogenesis. Also, mRNA m6 A modification has been implicated with insulin resistance in muscles, fat, and liver cells/tissues. In this review, we elaborate on the biological features of m6 A methylation; provide a comprehensive overview of the underlying mechanisms that how it controls β-cell function, identity, and mass as well as insulin resistance; highlight its connections to glucose metabolism and lipid metabolism linking to T2DM; and further discuss its role in diabetes complications and its therapeutic potentials for T2DM diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jiaoyu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Rui Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yiduo Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yafang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qian Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yaolei Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobo Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. m6A epitranscriptomic modification in diabetic microvascular complications. Trends Pharmacol Sci 2023; 44:S0165-6147(23)00215-8. [PMID: 39492320 DOI: 10.1016/j.tips.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
N6-methyladenosine (m6A) modifications are modulated by m6A methyltransferases, m6A demethylases, and m6A-binding proteins. The dynamic and reversible patterns of m6A modification control cell fate programming by regulating RNA splicing, translation, and decay. Emerging evidence demonstrates that m6A modification of coding and noncoding RNAs exerts crucial effects that influence the pathogenesis of diabetic microvascular complications that include diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic dermatosis. In this review, we summarize the roles of m6A modification and m6A modification-related enzymes in diabetic microvascular complications and discuss potential m6A modification-related enzyme-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
13
|
Wilinski D, Dus M. N 6-adenosine methylation controls the translation of insulin mRNA. Nat Struct Mol Biol 2023; 30:1260-1264. [PMID: 37488356 PMCID: PMC11756593 DOI: 10.1038/s41594-023-01048-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Control of insulin mRNA translation is crucial for energy homeostasis, but the mechanisms remain largely unknown. We discovered that insulin mRNAs across invertebrates, vertebrates and mammals feature the modified base N6-methyladenosine (m6A). In flies, this RNA modification enhances insulin mRNA translation by promoting the association of the transcript with polysomes. Depleting m6A in Drosophila melanogaster insulin 2 mRNA (dilp2) directly through specific 3' untranslated region (UTR) mutations, or indirectly by mutating the m6A writer Mettl3, decreases dilp2 protein production, leading to aberrant energy homeostasis and diabetic-like phenotypes. Together, our findings reveal adenosine mRNA methylation as a key regulator of insulin protein synthesis with notable implications for energy balance and metabolic disease.
Collapse
Affiliation(s)
- Daniel Wilinski
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Liu C, Li X, Gao M, Dong Y, Chen Z. Downregulation of hepatic METTL3 contributes to APAP-induced liver injury in mice. JHEP Rep 2023; 5:100766. [PMID: 37456679 PMCID: PMC10338307 DOI: 10.1016/j.jhepr.2023.100766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims Acetaminophen (APAP) overdose is a major cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. Methyltransferase-like 3 (METTL3) is a core N6-methyl-adenosine (m6A) RNA methyltransferase that has been shown to regulate many physiological and pathological processes. This study aimed to investigate the role of METTL3 in APAP-induced liver injury in mice. Methods Hepatocyte-specific Mettl3 knockout (Mettl3-HKO) mice and adenovirus-mediated gene overexpression or knockdown were used. We assayed APAP-induced liver injury by measuring serum alanine aminotransferase/aspartate aminotransferase activity, necrotic area, cell death, reactive oxygen species levels and activation of signalling pathways. We also performed mechanistic studies using a variety of assays and molecular techniques. Results Hepatic METTL3 is downregulated in APAP-induced liver injury, and hepatocyte-specific deletion of Mettl3 accelerates APAP-induced liver injury, leading to increased mortality as a result of the dramatic activation of the mitogen-activated protein kinase kinase 4 (MKK4) / c-Jun NH2-terminal kinase (JNK) signalling pathway. Inhibition of JNK by SP600125 largely blocks APAP-induced liver injury in Mettl3-HKO mice. Hepatic deletion of Mettl3 activates the MKK4/JNK signalling pathway by increasing the protein stability of MKK4 and JNK1/2 as a result of decreased proteasome activity. Restoration of proteasome activity by overexpression of proteasome 20S subunit beta 4 (PSMB4) or proteasome 20S subunit beta 6 (PSMB6) leads to the downregulation of MKK4 and JNK in Mettl3-HKO hepatocytes. Mechanistically, METTL3 interacts with RNA polymerase II and active histone modifications such as H3K9ac, H3K27ac, and H3K36me3 to maintain the expression of proteasome-related genes. Conclusions Our study demonstrated that downregulation of METTL3 promotes APAP-induced liver injury by decreasing proteasome activity and thereby enhancing activity of the MKK4/JNK signalling pathway. Impact and Implications Acetaminophen (APAP) overdose is a key cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. We demonstrated in this study that methyltransferase-like 3 (METTL3), a core m6A RNA methyltransferase, is downregulated in APAP-induced liver injury, which exacerbates APAP-induced liver injury through enhancing the MKK4/JNK signalling pathway with involvement of the decreased proteasome activity.
Collapse
Affiliation(s)
- Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
15
|
Zhang H, Gu Y, Gang Q, Huang J, Xiao Q, Ha X. N6-methyladenosine RNA modification: an emerging molecule in type 2 diabetes metabolism. Front Endocrinol (Lausanne) 2023; 14:1166756. [PMID: 37484964 PMCID: PMC10360191 DOI: 10.3389/fendo.2023.1166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence worldwide. Despite the considerable progress in the prevention and intervention, T2D and its complications cannot be reversed easily after diagnosis, thereby necessitating an in-depth investigation of the pathophysiology. In recent years, the role of epigenetics has been increasingly demonstrated in the disease, of which N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications. Interestingly, patients with T2D show a low m6A abundance. Thus, a comprehensive analysis and understanding of this phenomenon would improve our understanding of the pathophysiology, as well as the search for new biomarkers and therapeutic approaches for T2D. In this review, we systematically introduced the metabolic roles of m6A modification in organs, the metabolic signaling pathways involved, and the effects of clinical drugs on T2D.
Collapse
Affiliation(s)
- Haocheng Zhang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| | - Yan Gu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaojian Gang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Huang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Qian Xiao
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Benak D, Benakova S, Plecita-Hlavata L, Hlavackova M. The role of m 6A and m 6Am RNA modifications in the pathogenesis of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1223583. [PMID: 37484960 PMCID: PMC10360938 DOI: 10.3389/fendo.2023.1223583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Stepanka Benakova
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydie Plecita-Hlavata
- Laboratory of Pancreatic Islet Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
17
|
Gao P, Yao F, Pang J, Yin K, Zhu X. m 6A methylation in cellular senescence of age-associated diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1168-1183. [PMID: 37394885 PMCID: PMC10449638 DOI: 10.3724/abbs.2023107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 07/04/2023] Open
Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic reprogramming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development. Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes, atherosclerosis, Alzheimer's disease, and hypertension. Although corresponding anti-senescence therapies are actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of senescence remain unclear. N 6-methyladenosine (m 6A), a chemical modification commonly distributed in eukaryotic RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Numerous studies have shown that m 6A plays an important regulatory role in cellular senescence and aging-related disease. In this review, we systematically summarize the role of m 6A modifications in cellular senescence with regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes, atherosclerosis, and Alzheimer's disease regulation via m 6A-mediated cellular senescence is discussed. We further discuss the challenges and prospects of m 6A in cellular senescence and age-associated diseases with the aim of providing rational strategies for the treatment of these age-associated diseases.
Collapse
Affiliation(s)
- Pan Gao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Feng Yao
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Jin Pang
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| | - Kai Yin
- The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510900China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541100China
| |
Collapse
|
18
|
Yang K, Sun J, Zhang Z, Xiao M, Ren D, Liu SM. Reduction of mRNA m 6A associates with glucose metabolism via YTHDC1 in human and mice. Diabetes Res Clin Pract 2023; 198:110607. [PMID: 36878322 DOI: 10.1016/j.diabres.2023.110607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
AIMS N6-methyladenosine (m6A) in mRNA is involved in glucose metabolism. Our goal is to investigate the relationship of glucose metabolism, m6A and YTH domain-containing protein 1 (YTHDC1), a binding protein to m6A, in the development of type 2 diabetes (T2D). METHODS HPLC-MS/MS and qRT-PCR were used to quantify m6A and YTHDC1 levels in white blood cells from patients with T2D and healthy individuals. MIP-CreERT and tamoxifen treatment were used to create β-cell Ythdc1 knockout mice (βKO). m6A sequencing and RNA sequencing were performed in wildtype/βKO islets and MIN6 cells to identify the differential genes. RESULTS In T2D patients, both of m6A and YTHDC1 levels were reduced and associated with fasting glucose. Deletion of Ythdc1 resulted in glucose intolerance and diabetes due to decreased insulin secretion, even though β-cell mass in βKO mice was comparable to wildtype mice. Moreover, Ythdc1 was shown to bind to SRSF3 (serine/arginine-rich splicing factor 3) and CPSF6 (cleavage and polyadenylation specific factor 6) in β-cells. CONCLUSIONS Our data suggested that YTHDC1 may regulate mRNA splicing and export by interacting with SRSF3 and CPSF6 to modulate glucose metabolism via regulating insulin secretion, implying YTHDC1 might be a novel potential target for lowing glucose.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Juan Sun
- Department of Neurobiology, The University of Chicago, 5841, S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, 5841, S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA
| | - Mengyao Xiao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Decheng Ren
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 1027, Chicago, IL 60637, USA.
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
19
|
Li X, Yang Y, Li Z, Wang Y, Qiao J, Chen Z. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia 2023; 66:1084-1096. [PMID: 36920524 DOI: 10.1007/s00125-023-05900-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS N6-methyladenosine (m6A) mRNA methylation and m6A-related proteins (methyltransferase-like 3 [METTL3], methyltransferase-like 14 [METTL14] and YTH domain containing 1 [YTHDC1]) have been shown to regulate islet beta cell function and the pathogenesis of diabetes. However, whether Wilms' tumour 1-associating protein (WTAP), a key regulator of the m6A RNA methyltransferase complex, regulates islet beta cell failure during pathogenesis of diabetes is largely unknown. The present study aimed to investigate the role of WTAP in the regulation of islet beta cell failure and diabetes. METHODS Islet beta cell-specific Wtap-knockout and beta cell-specific Mettl3-overexpressing mice were generated for this study. Blood glucose, glucose tolerance, serum insulin, glucose-stimulated insulin secretion (both in vivo and in vitro), insulin levels, glucagon levels and beta cell apoptosis were examined. RNA-seq and MeRIP-seq were performed, and the data were well analysed. RESULTS WTAP was downregulated in islet beta cells in type 2 diabetes, due to lipotoxicity and chronic inflammation, and islet beta cell-specific deletion of Wtap (Wtap-betaKO) induced beta cell failure and diabetes. Wtap-betaKO mice showed severe hyperglycaemia (above 20 mmol/l [360 mg/dl]) from 8 weeks of age onwards. Mechanistically, WTAP deficiency decreased m6A mRNA modification and reduced the expression of islet beta cell-specific transcription factors and insulin secretion-related genes by reducing METTL3 protein levels. Islet beta cell-specific overexpression of Mettl3 partially reversed the abnormalities observed in Wtap-betaKO mice. CONCLUSIONS/INTERPRETATION WTAP plays a key role in maintaining beta cell function by regulating m6A mRNA modification depending on METTL3, and the downregulation of WTAP leads to beta cell failure and diabetes. DATA AVAILABILITY The RNA-seq and MeRIP-seq datasets generated during the current study are available in the Gene Expression Omnibus database repository ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215156 ; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215360 ).
Collapse
Affiliation(s)
- Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|