1
|
Garnsey MR, Wang Y, Edmonds DJ, Sammons MF, Reidich B, Ahn Y, Ashkenazi Y, Carlo A, Cerny MA, Coffman KJ, Culver JA, Dechert Schmitt AM, Eng H, Fisher EL, Gutierrez JA, James L, Jordan S, Kohrt JT, Kramer M, LaChapelle EA, Lee JC, Lee J, Li D, Li Z, Liu S, Liu J, Magee TV, Miller MR, Moran M, Nason DM, Nedoma NL, O'Neil SV, Piotrowski MA, Racich J, Sommese RF, Stevens LM, Wright AS, Xiao J, Zhang L, Zhou D, Barrandon O, Clasquin MF. Design and application of synthetic 17B-HSD13 substrates reveals preserved catalytic activity of protective human variants. Nat Commun 2025; 16:297. [PMID: 39746932 PMCID: PMC11697577 DOI: 10.1038/s41467-024-54487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Several hydroxysteroid dehydrogenase 17-beta 13 variants have previously been identified as protective against metabolic dysfunction-associated steatohepatitis (MASH) fibrosis, ballooning and inflammation, and as such this target holds significant therapeutic potential. However, over 5 years later, the function of 17B-HSD13 remains unknown. Structure-aided design enables the development of potent and selective sulfonamide-based 17B-HSD13 inhibitors. In order to probe their inhibitory potency in endogenous expression systems like primary human hepatocytes, inhibitors are transformed into synthetic surrogate substrates with distinct selectivity advantages over substrates previously published. Their application to cells endogenously expressing 17B-HSD13 enables quantitative measures of enzymatic inhibition in primary human hepatocytes which has never been reported to date. Application to multiple cellular systems expressing the protective human variants reveals that the most prevalent IsoD variant maintains NAD-dependent catalytic activity towards some but not all substrates, contradicting reports that the truncation results in loss-of-function.
Collapse
Affiliation(s)
| | - Yang Wang
- Pfizer, Inc., Cambridge, MA, 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jisun Lee
- Pfizer, Inc., Groton, CT, 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jun Xiao
- Pfizer, Inc., Groton, CT, 06340, USA
| | | | | | | | | |
Collapse
|
2
|
Narongkiatikhun P, Choi YJ, Hampson H, Gotzamanis J, Zhang G, van Raalte DH, de Boer IH, Nelson RG, Tommerdahl KL, McCown PJ, Kanter J, Sharma K, Bjornstad P, Saulnier PJ. Unraveling Diabetic Kidney Disease: The Roles of Mitochondrial Dysfunction and Immunometabolism. Kidney Int Rep 2024; 9:3386-3402. [PMID: 39698345 PMCID: PMC11652104 DOI: 10.1016/j.ekir.2024.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism. In addition, this inflammatory microenvironment has the potential to modify immune cell metabolism, which may further accentuate the immune-mediated kidney injury. This understanding has led to the emerging field of immunometabolism, which views DKD as not just a metabolic disorder caused by hyperglycemia but also one with significant immune contributions. Targeting mitochondrial function and immunometabolism may offer protective effects for the kidneys, complementing current therapies and potentially mitigating the risk of DKD progression. This comprehensive review examines the impact of mitochondrial dysfunction and the potential role of immunometabolism in DKD. We also discuss tools for investigating these mechanisms and propose avenues for integrating this research with existing therapies. These insights underscore the modulation of mitochondrial function and immunometabolism as a critical strategy for decelerating DKD progression.
Collapse
Affiliation(s)
- Phoom Narongkiatikhun
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ye Ji Choi
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hailey Hampson
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jimmy Gotzamanis
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Guanshi Zhang
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ian H. de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Kalie L. Tommerdahl
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jenny Kanter
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kumar Sharma
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Petter Bjornstad
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pierre Jean Saulnier
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| |
Collapse
|
3
|
Destine M, Seret A. Quantitative assessment of kidney split function and mean transit time in healthy patients using dynamic 18F-FDG PET/MRI studies with denoising and deconvolution methods making use of Legendre polynomials. EJNMMI REPORTS 2024; 8:33. [PMID: 39402390 PMCID: PMC11473472 DOI: 10.1186/s41824-024-00221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Our objective was to assess a deconvolution and denoising technique based on Legendre polynomials compared to matrix deconvolution on dynamic 18F-FDG renography of healthy patients. METHOD The study was carried out and compared to the data of 24 healthy patients from a published study who underwent examinations with 99mTc-MAG3 planar scintigraphy and 18F-FDG PET/MRI. Due to corruption issues in some data used in the published article, post-publication measurements were provided. We have been warned that post-publication data were treated differently. The smoothing method switched from Bezier to Savitzky-Golay and the deconvolution from matrix-based (with Tikhonov Regularization) to Richardson-Lucy. A comparison of the split function and mean transit times of the published and post-publication data against our method based on Legendre polynomials was performed. RESULTS For split function, we only observed a good agreement between the processing methods for the 99mTc-MAG3 and the post-published data. No correlation was found between the split functions obtained on the 99mTc-MAG3 and the 18F-FDG, contrary to the published study. However, all calculated split function values for 18F-FDG and 99mTc-MAG3 were within the established normal range. For the mean transit time, the correlation was moderate with published data and very good with the post-publication measurements for both 99mTc-MAG3 and 18F-FDG. Bias of the Bland-Altman analysis of the mean transit times for 99mTc-MAG3 versus 18F-FDG was 1.1 min (SD 1.7 min) for the published data, - 0.11 min (SD 1.9 min) for the post-publication results and .05 min (SD 1.9 min) for our method. CONCLUSIONS The processing methods used in the original publication and in the post-publication work were quite complex and required adaptation of the fitting parameters for each individual and each type of examination. Our method did not require any specific adjustment; the same unmodified and fully automated algorithm was successfully applied to all data.
Collapse
Affiliation(s)
- Michel Destine
- Nuclear Medicine Department, Sainte Elisabeth Hospital, CHU UCL Namur, Namur, Belgium.
| | - Alain Seret
- GIGA Research - CRC Human Imaging Unit, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Rebelos E, Mari A, Honka MJ, Pekkarinen L, Latva-Rasku A, Laurila S, Rajander J, Salminen P, Iida H, Ferrannini E, Nuutila P. Renal Cortical Glucose Uptake Is Decreased in Insulin Resistance and Correlates Inversely With Serum Free-fatty Acids. J Clin Endocrinol Metab 2024; 109:1033-1040. [PMID: 37955868 PMCID: PMC11794995 DOI: 10.1210/clinem/dgad663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT Studies on human renal metabolism are scanty. Nowadays, functional imaging allows the characterization of renal metabolism in a noninvasive manner. We have recently demonstrated that fluorodeoxyglucose F18 (18F FDG) positron emission tomography can be used to analyze renal glucose uptake (GU) rates, and that the renal cortex is an insulin-sensitive tissue. OBJECTIVE To confirm that renal GU is decreased in people with obesity and to test whether circulating metabolites are related to renal GU. DESIGN, SETTING AND PARTICIPANTS Eighteen people with obesity and 18 nonobese controls were studied with [18F]FDG positron emission tomography during insulin clamp. Renal scans were obtained ∼60 minutes after [18F]FDG injection. Renal GU was measured using fractional uptake rate and after correcting for residual intratubular [18F]FDG. Circulating metabolites were measured using high-throughput proton nuclear magnetic resonance metabolomics. RESULTS Cortical GU was higher in healthy nonobese controls compared with people with obesity (4.7 [3.4-5.6] vs 3.1 [2.2-4.3], P = .004, respectively), and it associated positively with the degree of insulin sensitivity (M value) (r = 0.42, P = .01). Moreover, cortical GU was inversely associated with circulating β-OH-butyrate (r = -0.58, P = .009), acetoacetate (r = -0.48, P = .008), citrate (r = -0.44, P = .01), and free fatty acids (r = -0.68, P < .0001), even when accounting for the M value. On the contrary, medullary GU was not associated with any clinical parameters. CONCLUSION These data confirm differences in renal cortical GU between people with obesity and healthy nonobese controls. Moreover, the negative correlations between renal cortex GU and free fatty acids, ketone bodies, and citrate are suggestive of substrate competition in the renal cortex.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland
| | - Andrea Mari
- CNR Institute of Neuroscience, Padova, 35121, Italy
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland
- Division of Information Science, Nara Institute of Science and Technology, Takayamacho 8916-5, Ikoma, Nara 630-0192, Japan
| | - Laura Pekkarinen
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20521, Turku, Finland
| | - Aino Latva-Rasku
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20521, Turku, Finland
| | - Sanna Laurila
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- Heart Center, Turku University Hospital, 20521, Turku, Finland
- Department of Medicine, University of Turku, 20520, Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, 20521, Turku, Finland
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, 20521, Turku, Finland
| | - Hidehiro Iida
- Turku PET Centre, University of Turku, 20520, Turku, Finland
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, 56124, Italy
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20521, Turku, Finland
| |
Collapse
|
5
|
Dondi F, Pisani AR, Lucarelli NM, Gazzilli M, Talin A, Albano D, Rubini D, Maggialetti N, Rubini G, Bertagna F. Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function. J Pers Med 2023; 14:40. [PMID: 38248741 PMCID: PMC10817585 DOI: 10.3390/jpm14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Different insights into the connection between kidney [18F]fluorodesoxyglucose ([18F]FDG) uptake at positron emission tomography/computed tomography (PET/CT) and renal function have been proposed in the past. The aim of this study was therefore to assess the presence of a correlation between these two parameters. Kidney uptakes were assessed and compared to the creatinine (Cr) values and estimated glomerular filtration rate (EGFR) among different classes of renal functional impairment or kidney status. A total of 339 patients and 385 different PET/CT scans were included in this study. Significant correlations between kidney uptakes and renal function parameters were reported in most of the groups studied, with the exception of patients with Cr < 1.2 mg/dL and subjects with a kidney transplantation. Strong concordance in the assessment of renal parenchymal uptakes between the different readers was reported. To conclude, strong correlations for renal [18F]FDG uptake with Cr levels and the EGFR were reported, with the exception of the group of patients with a Cr value < 1.2 mg/dL and for the group with a kidney transplantation.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy; (F.D.); (A.T.); (D.A.); (F.B.)
| | - Antonio Rosario Pisani
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.R.P.); (N.M.); (G.R.)
| | - Nicola Maria Lucarelli
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.R.P.); (N.M.); (G.R.)
| | - Maria Gazzilli
- Nuclear Medicine, ASL Bari—P.O. Di Venere, 70012 Bari, Italy
| | - Anna Talin
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy; (F.D.); (A.T.); (D.A.); (F.B.)
| | - Domenico Albano
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy; (F.D.); (A.T.); (D.A.); (F.B.)
| | - Dino Rubini
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Nicola Maggialetti
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.R.P.); (N.M.); (G.R.)
| | - Giuseppe Rubini
- Section of Nuclear Medicine, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (A.R.P.); (N.M.); (G.R.)
| | - Francesco Bertagna
- Nuclear Medicine, Università Degli Studi di Brescia and ASST Spedali Civili Brescia, 25123 Brescia, Italy; (F.D.); (A.T.); (D.A.); (F.B.)
| |
Collapse
|
6
|
Päivärinta J, Anastasiou IA, Koivuviita N, Sharma K, Nuutila P, Ferrannini E, Solini A, Rebelos E. Renal Perfusion, Oxygenation and Metabolism: The Role of Imaging. J Clin Med 2023; 12:5141. [PMID: 37568543 PMCID: PMC10420088 DOI: 10.3390/jcm12155141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases.
Collapse
Affiliation(s)
- Johanna Päivärinta
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Ioanna A. Anastasiou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Niina Koivuviita
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK;
| | - Pirjo Nuutila
- Turku PET Centre, 20521 Turku, Finland;
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| | - Ele Ferrannini
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56124 Pisa, Italy;
| | - Eleni Rebelos
- Turku PET Centre, 20521 Turku, Finland;
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
7
|
Rebelos E, Tentolouris N, Jude E. The Role of Vitamin D in Health and Disease: A Narrative Review on the Mechanisms Linking Vitamin D with Disease and the Effects of Supplementation. Drugs 2023; 83:665-685. [PMID: 37148471 PMCID: PMC10163584 DOI: 10.1007/s40265-023-01875-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Vitamin D insufficiency or deficiency (VDD) is a very prevalent condition in the general population. Vitamin D is necessary for optimal bone mineralization, but apart from the bone effects, preclinical and observational studies have suggested that vitamin D may have pleiotropic actions, whereas VDD has been linked to several diseases and higher all-cause mortality. Thus, supplementing vitamin D has been considered a safe and inexpensive approach to generate better health outcomes-and especially so in frail populations. Whereas it is generally accepted that prescribing of vitamin D in VDD subjects has demonstrable health benefits, most randomized clinical trials, although with design constraints, assessing the effects of vitamin D supplementation on a variety of diseases have failed to demonstrate any positive effects of vitamin D supplementation. In this narrative review, we first describe mechanisms through which vitamin D may exert an important role in the pathophysiology of the discussed disorder, and then provide studies that have addressed the impact of VDD and of vitamin D supplementation on each disorder, focusing especially on randomized clinical trials and meta-analyses. Despite there already being vast literature on the pleiotropic actions of vitamin D, future research approaches that consider and circumvent the inherent difficulties in studying the effects of vitamin D supplementation on health outcomes are needed to assess the potential beneficial effects of vitamin D. The evaluation of the whole vitamin D endocrine system, rather than only of 25-hydroxyvitamin D levels before and after treatment, use of adequate and physiologic vitamin D dosing, grouping based on the achieved vitamin D levels rather than the amount of vitamin D supplementation subjects may receive, and sufficiently long follow-up are some of the aspects that need to be carefully considered in future studies.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Nikolaos Tentolouris
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Edward Jude
- Department of Medicine, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne , England.
- University of Manchester, Manchester, UK.
- Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|