1
|
Wang Z, Townley SL, Zhang S, Liu M, Li M, Labaf M, Patalano S, Venkataramani K, Siegfried KR, Macoska JA, Han D, Gao S, Risbridger GP, Taylor RA, Lawrence MG, He HH, Selth LA, Cai C. FOXA2 rewires AP-1 for transcriptional reprogramming and lineage plasticity in prostate cancer. Nat Commun 2024; 15:4914. [PMID: 38851846 PMCID: PMC11162502 DOI: 10.1038/s41467-024-49234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.
Collapse
Affiliation(s)
- Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
- Yale Stem Cell Center, Department of Cell Biology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, 5042, Australia
| | - Songqi Zhang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Maryam Labaf
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kavita Venkataramani
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kellee R Siegfried
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Shuai Gao
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, 10595, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, 10595, USA
| | - Gail P Risbridger
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, 5042, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA.
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
2
|
Lu C, Wei Y, Abbas M, Agula H, Wang E, Meng Z, Zhang R. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects. Int J Mol Sci 2024; 25:1479. [PMID: 38338756 PMCID: PMC10855595 DOI: 10.3390/ijms25031479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide profiling of chromatin accessibility at the cellular level and the capturing of cell-type-specific cis-regulatory elements (CREs) that are masked by cellular heterogeneity in bulk assays. Additionally, it can also facilitate the identification of rare and new cell types based on differences in chromatin accessibility and the charting of cellular developmental trajectories within lineage-related cell clusters. Due to technical challenges and limitations, the data generated from scATAC-seq exhibit unique features, often characterized by high sparsity and noise, even within the same cell type. To address these challenges, various bioinformatic tools have been developed. Furthermore, the application of scATAC-seq in plant science is still in its infancy, with most research focusing on root tissues and model plant species. In this review, we provide an overview of recent progress in scATAC-seq and its application across various fields. We first conduct scATAC-seq in plant science. Next, we highlight the current challenges of scATAC-seq in plant science and major strategies for cell type annotation. Finally, we outline several future directions to exploit scATAC-seq technologies to address critical challenges in plant science, ranging from plant ENCODE(The Encyclopedia of DNA Elements) project construction to GRN inference, to deepen our understanding of the roles of CREs in plant biology.
Collapse
Affiliation(s)
- Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Hasi Agula
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| |
Collapse
|