1
|
Clinical Characteristics and Gene Mutation Analysis of the Chinese Han Population with Gitelman Syndrome: 3 Case Reports and a Literature Review. Case Rep Med 2020; 2020:6263721. [PMID: 33163079 PMCID: PMC7604593 DOI: 10.1155/2020/6263721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The present study reported clinical characteristics and the results of gene mutation analysis of 3 Chinese patients with Gitelman syndrome (GS). Three patients manifested with normal blood pressure, recurrent hypokalemia, and metabolic alkalosis. Only case 2 had obvious hypomagnesemia. Gene sequencing showed a compound heterozygous mutation in SCL12A3 in case 1 and a homozygous mutation in SCL12A3 in case 2. Heterozygous mutations in SCL12A3 and CLCNKB were found in case 3. Then, the literature was reviewed. The keyword “Gitelman syndrome” was inputted into the PubMed, Wanfang Database, and CNK to search all Chinese patients with GS diagnosed by gene mutations and to extract complete clinical data from December 1998 to 2018. Finally, a total of 124 cases of GS were included. No significant differences in the levels of serum potassium and magnesium were observed among the different gene mutations, and the serum magnesium levels in adults were lower than those of the juvenile. GS with reduced blood magnesium had a serious clinical phenotype. Therefore, GS had a diverse phenotype, and its final diagnosis required genetic profiling. The relationship of gene mutation and clinical phenotype needed further study.
Collapse
|
2
|
Han Y, Cheng H, Shao S, Lang Y, Zhao X, Lin Y, Wang S, Shi X, Liu Z, Shao L. Thirteen novel CLCNKB variants and genotype/phenotype association study in 42 Chinese patients with Bartter syndrome type 3. Endocrine 2020; 68:192-202. [PMID: 31834604 DOI: 10.1007/s12020-019-02156-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Analyze the genotype of 42 Chinese patients with Bartter syndrome type 3 (BS3) and investigate their correlation between genotype and phenotype. METHODS Identify CLCNKB gene variants by the next-generation sequencing and the multiplex ligation-dependent probe amplification (MLPA), and then evaluate their mutation effects according to 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines. RESULTS Thirty-six different variants in CLCNKB gene, including 13 novel ones, were found. The whole gene deletion of CLCNKB gene was the most frequent mutation (40%), and the rate of large deletions is up to 55%. Among 36 variants, six (c.1244T>A, c.1468G>A, c.849_851delCTT, c.359G>T, c.1052G>T, and c.1309G>A) and three (c.228A>C, c.1294_1295TA>CT, and c.1333T>G) variants were classified as "likely pathogenic variants" and "variants with uncertain significance (VUS)," respectively. The other 27 variants were classified as "pathogenic variants". The most common symptoms included: growth retardation (38/42), polydipsia and polyuria (35/42), constipation (31/42), and vomiting (27/42). All patients presented with hypokalemia, hypochloremia, and metabolic alkalosis. The genotype and phenotype association study revealed that who had mutations probably resulting in complete loss of function of both alleles might have severer phenotype. After the treatment that based on indomethacin and potassium chloride, most patients could achieve obvious recovery of growth rate and restoration of hypokalemia. CONCLUSIONS The present study have found 36 variants of CLCNKB gene, including 13 novel ones, which enrich the human gene mutation database and provide valuable references to diagnosis, treatment, and the genetic counseling of Chinese population.
Collapse
Affiliation(s)
- Yue Han
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Hai Cheng
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Yanhua Lang
- Department of Nursing, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Yi Lin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No. 5 Donghai Middle Road, Qingdao, 266071, PR China.
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, PR China.
| |
Collapse
|
3
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
4
|
Cho HW, Lee ST, Cho H, Cheong HI. A novel mutation of CLCNKB in a Korean patient of mixed phenotype of Bartter-Gitelman syndrome. KOREAN JOURNAL OF PEDIATRICS 2016; 59:S103-S106. [PMID: 28018459 PMCID: PMC5177689 DOI: 10.3345/kjp.2016.59.11.s103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
Bartter syndrome (BS) is an inherited renal tubular disorder characterized by low or normal blood pressure, hypokalemic metabolic alkalosis, and hyperreninemic hyperaldosteronism. Type III BS is caused by loss-of-function mutations in CLCNKB encoding basolateral ClC-Kb. The clinical phenotype of patients with CLCNKB mutations has been known to be highly variable, and cases that are difficult to categorize as type III BS or other hereditary tubulopathies, such as Gitelman syndrome, have been rarely reported. We report a case of a 10-year-old Korean boy with atypical clinical findings caused by a novel CLCNKB mutation. The boy showed intermittent muscle cramps with laboratory findings of hypokalemia, severe hypomagnesemia, and nephrocalcinosis. These findings were not fully compatible with those observed in cases of BS or Gitelman syndrome. The CLCNKB mutation analysis revealed a heterozygous c.139G>A transition in exon 13 [p.Gly(GGG)465Glu(GAG)]. This change is not a known mutation; however, the clinical findings and in silico prediction results indicated that it is the underlying cause of his presentation.
Collapse
Affiliation(s)
- Hee-Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Taek Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heeyeon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
5
|
Hennings JC, Andrini O, Picard N, Paulais M, Huebner AK, Cayuqueo IKL, Bignon Y, Keck M, Cornière N, Böhm D, Jentsch TJ, Chambrey R, Teulon J, Hübner CA, Eladari D. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron. J Am Soc Nephrol 2016; 28:209-217. [PMID: 27335120 DOI: 10.1681/asn.2016010085] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/04/2016] [Indexed: 11/03/2022] Open
Abstract
Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.
Collapse
Affiliation(s)
- J Christopher Hennings
- Institut für Humangenetik, University Hospital Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Olga Andrini
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Nicolas Picard
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Marc Paulais
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Antje K Huebner
- Institut für Humangenetik, University Hospital Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Irma Karen Lopez Cayuqueo
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Centro de Estudios Científicos, Valdivia, Chile
| | - Yohan Bignon
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Mathilde Keck
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France
| | - Nicolas Cornière
- Service de Néphrologie, Hôpital Felix Guyon, Centre Hospitalier Universitaire de la Réunion, St Denis, Ile de la Réunion, France
| | - David Böhm
- Institut für Humangenetik, University Hospital Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück Centrum für Molekulare Medizin, Berlin, Germany
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France.,Faculté de Médecine, Université Paris-Descartes, Paris, France.,Centre National de la Recherche Scientifique, Paris, France; and
| | - Jacques Teulon
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche en Santé 1138, Université Pierre et Marie Curie, Centre de Recherche des Cordeliers, Paris, France;
| | - Christian A Hübner
- Institut für Humangenetik, University Hospital Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France; .,Faculté de Médecine, Université Paris-Descartes, Paris, France.,Département de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|