1
|
Saier MH. Cooperation and Competition Were Primary Driving Forces for Biological Evolution. Microb Physiol 2025; 35:13-29. [PMID: 39999802 PMCID: PMC11999638 DOI: 10.1159/000544890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND For many years, scientists have accepted Darwin's conclusion that "Survival of the Fittest" involves successful competition with other organisms for life-endowing molecules and conditions. SUMMARY Newly discovered "partial" organisms with minimal genomes that require symbiotic or parasitic relationships for growth and reproduction suggest that cooperation in addition to competition was and still is a primary driving force for survival. These two phenomena are not mutually exclusive, and both can confer a competitive advantage for survival. In fact, cooperation may have been more important in the early evolution of life on earth before autonomous organisms developed, becoming large genome organisms. KEY MESSAGES This suggestion has tremendous consequences with respect to our conception of the early evolution of life on earth as well as the appearance of intercellular interactions, multicellularity and the nature of interactions between humans and their societies (e.g., social Darwinism).
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
3
|
Goncearenco A, Berezovsky IN. The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins. Biol Direct 2014; 9:29. [PMID: 25496919 PMCID: PMC4273451 DOI: 10.1186/s13062-014-0029-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022] Open
Abstract
Background Mutations in nucleotide sequences provide a foundation for genetic variability, and selection is the driving force of the evolution and molecular adaptation. Despite considerable progress in the understanding of selective forces and their compositional determinants, the very nature of underlying mutational biases remains unclear. Results We explore here a fundamental tradeoff, which analytically describes mutual adjustment of the nucleotide and amino acid compositions and its possible effect on the mutational biases. The tradeoff is determined by the interplay between the genetic code, optimization of the codon entropy, and demands on the structure and stability of nucleic acids and proteins. Conclusion The tradeoff is the unifying property of all prokaryotes regardless of the differences in their phylogenies, life styles, and extreme environments. It underlies mutational biases characteristic for genomes with different nucleotide and amino acid compositions, providing foundation for evolution and adaptation. Reviewers This article was reviewed by Eugene Koonin, Michael Gromiha, and Alexander Schleiffer. Electronic supplementary material The online version of this article (doi:10.1186/s13062-014-0029-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Computational Biology Unit and Department of Informatics, University of Bergen, N-5008, Bergen, Norway. .,Current address: Computational Biology Branch of the National Center for Biotechnology Information in Bethesda, Maryland, USA.
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore. .,Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117597, Singapore, Singapore.
| |
Collapse
|
4
|
Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 2014; 5:213. [PMID: 25071838 PMCID: PMC4090602 DOI: 10.3389/fgene.2014.00213] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo Ako-gun, Hyogo, Japan
| |
Collapse
|
5
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Goncearenco A, Ma BG, Berezovsky IN. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins. Nucleic Acids Res 2013; 42:2879-92. [PMID: 24371267 PMCID: PMC3950714 DOI: 10.1093/nar/gkt1336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.
Collapse
Affiliation(s)
- Alexander Goncearenco
- CBU, University of Bergen, 5020 Bergen, Norway, Department of Informatics, University of Bergen, 5020 Bergen, Norway, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671 Singapore and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
7
|
Eme L, Reigstad LJ, Spang A, Lanzén A, Weinmaier T, Rattei T, Schleper C, Brochier-Armanet C. Metagenomics of Kamchatkan hot spring filaments reveal two new major (hyper)thermophilic lineages related to Thaumarchaeota. Res Microbiol 2013; 164:425-38. [DOI: 10.1016/j.resmic.2013.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
8
|
Godde JS. Breaking through a phylogenetic impasse: a pair of associated archaea might have played host in the endosymbiotic origin of eukaryotes. Cell Biosci 2012; 2:29. [PMID: 22913376 PMCID: PMC3490757 DOI: 10.1186/2045-3701-2-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
For over a century, the origin of eukaryotes has been a topic of intense debate among scientists. Although it has become widely accepted that organelles such as the mitochondria and chloroplasts arose via endosymbiosis, the origin of the eukaryotic nucleus remains enigmatic. Numerous models for the origin of the nucleus have been proposed over the years, many of which use endosymbiosis to explain its existence. Proposals of microbes whose ancestors may have served as either a host or a guest in various endosymbiotic scenarios abound, none of which have been able to sufficiently incorporate the cell biological as well as phylogenetic data which links these organisms to the nucleus. While it is generally agreed that eukaryotic nuclei share more features in common with archaea rather than with bacteria, different studies have identified either one or the other of the two major groups of archaea as potential ancestors, leading to somewhat of a stalemate. This paper seeks to resolve this impasse by presenting evidence that not just one, but a pair of archaea might have served as host to the bacterial ancestor of the mitochondria. This pair may have consisted of ancestors of both Ignicoccus hospitalis as well as its ectosymbiont/ectoparasite ‘Nanoarchaeum equitans’.
Collapse
Affiliation(s)
- James S Godde
- Department of Biology, Monmouth College, 700 East Broadway, Monmouth, IL 61430, USA.
| |
Collapse
|
9
|
Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. Appl Environ Microbiol 2011; 78:568-74. [PMID: 22081574 DOI: 10.1128/aem.06095-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here a novel selectable marker for the hyperthermophilic crenarchaeon Sulfolobus islandicus. The marker cassette is composed of the sac7d promoter and the hmg gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (P(sac7d)-hmg), which confers simvastatin resistance to this crenarchaeon. The basic plasmid vector pSSR was constructed by substituting the pyrEF gene of the expression vector pSeSD for P(sac7d)-hmg with which the Sulfolobus expression plasmids pSSRlacS, pSSRAherA, and pSSRNherA were constructed. Characterization of Sulfolobus transformants carrying pSSRlacS indicated that the plasmid was properly maintained under selection. High-level expression of the His(6)-tagged HerA helicase was obtained with the cells harboring pSSRAherA. The establishment of two efficient selectable markers (pyrEF and hmg) was subsequently exploited for genetic analysis. A herA merodiploid strain of S. islandicus was constructed using pyrEF marker and used as the host to obtain pSSRNherA transformant with simvastatin selection. While the gene knockout (ΔherA) cells generated from the herA merodiploid cells failed to form colonies in the presence of 5-fluoroorotic acid (5-FOA), the mutant cells could be rescued by expression of the gene from a plasmid (pSSRNherA), because their transformants formed colonies on a solid medium containing 5-FOA and simvastatin. This demonstrates that HerA is essential for cell viability of S. islandicus. To our knowledge, this is the first application of an antibiotic selectable marker in genetic study for a hyperthermophilic acidophile and in the crenarchaeal lineage.
Collapse
|
10
|
Toward an efficient method of identifying core genes for evolutionary and functional microbial phylogenies. PLoS One 2011; 6:e24704. [PMID: 21931822 PMCID: PMC3171473 DOI: 10.1371/journal.pone.0024704] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/16/2011] [Indexed: 02/04/2023] Open
Abstract
Microbial community metagenomes and individual microbial genomes are becoming increasingly accessible by means of high-throughput sequencing. Assessing organismal membership within a community is typically performed using one or a few taxonomic marker genes such as the 16S rDNA, and these same genes are also employed to reconstruct molecular phylogenies. There is thus a growing need to bioinformatically catalog strongly conserved core genes that can serve as effective taxonomic markers, to assess the agreement among phylogenies generated from different core gene, and to characterize the biological functions enriched within core genes and thus conserved throughout large microbial clades. We present a method to recursively identify core genes (i.e. genes ubiquitous within a microbial clade) in high-throughput from a large number of complete input genomes. We analyzed over 1,100 genomes to produce core gene sets spanning 2,861 bacterial and archaeal clades, ranging in size from one to >2,000 genes in inverse correlation with the α-diversity (total phylogenetic branch length) spanned by each clade. These cores are enriched as expected for housekeeping functions including translation, transcription, and replication, in addition to significant representations of regulatory, chaperone, and conserved uncharacterized proteins. In agreement with previous manually curated core gene sets, phylogenies constructed from one or more of these core genes agree with those built using 16S rDNA sequence similarity, suggesting that systematic core gene selection can be used to optimize both comparative genomics and determination of microbial community structure. Finally, we examine functional phylogenies constructed by clustering genomes by the presence or absence of orthologous gene families and show that they provide an informative complement to standard sequence-based molecular phylogenies.
Collapse
|
11
|
Molecular signatures for the Crenarchaeota and the Thaumarchaeota. Antonie van Leeuwenhoek 2010; 99:133-57. [PMID: 20711675 DOI: 10.1007/s10482-010-9488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales-3 CSIs and 169 SPs, Thermoproteales-5 CSIs and 25 SPs, Desulfurococcales-4 SPs, and Sulfolobales and Desulfurococcales-2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.
Collapse
|
12
|
Lu C, Ding F, Ke A. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One 2010; 5:e8739. [PMID: 20090900 PMCID: PMC2806925 DOI: 10.1371/journal.pone.0008739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 11/18/2022] Open
Abstract
Background The exosome complex is an essential RNA 3′-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry. Methodology/Principal Findings Here we report an asymmetric 2.9 Å Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation. Conclusion/Significance This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.
Collapse
Affiliation(s)
- Changrui Lu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Fang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gil R, Latorre A, Moya A. Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
A survey of integral alpha-helical membrane proteins. ACTA ACUST UNITED AC 2009; 10:269-80. [PMID: 19760129 PMCID: PMC2780624 DOI: 10.1007/s10969-009-9069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/21/2009] [Indexed: 11/13/2022]
Abstract
Membrane proteins serve as cellular gatekeepers, regulators, and sensors. Prior studies have explored the functional breadth and evolution of proteins and families of particular interest, such as the diversity of transport-associated membrane protein families in prokaryotes and eukaryotes, the composition of integral membrane proteins, and family classification of all human G-protein coupled receptors. However, a comprehensive analysis of the content and evolutionary associations between membrane proteins and families in a diverse set of genomes is lacking. Here, a membrane protein annotation pipeline was developed to define the integral membrane genome and associations between 21,379 proteins from 34 genomes; most, but not all of these proteins belong to 598 defined families. The pipeline was used to provide target input for a structural genomics project that successfully cloned, expressed, and purified 61 of our first 96 selected targets in yeast. Furthermore, the methodology was applied (1) to explore the evolutionary history of the substrate-binding transmembrane domains of the human ABC transporter superfamily, (2) to identify the multidrug resistance-associated membrane proteins in whole genomes, and (3) to identify putative new membrane protein families.
Collapse
|
15
|
Formal Proof that the Split Genes of tRNAs of Nanoarchaeum equitans Are an Ancestral Character. J Mol Evol 2009; 69:505-11. [DOI: 10.1007/s00239-009-9280-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
|
16
|
Gribaldo S, Brochier C. Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 2009; 160:513-21. [PMID: 19631737 DOI: 10.1016/j.resmic.2009.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022]
Abstract
Understanding microbial evolution is essential for gathering information on the most ancient events in the history of Life on our planet. Nevertheless, the idea that it is impossible to reconstruct the evolutionary history of prokaryotes because of horizontal gene transfer has become very popular. We review this important debate and how it can be solved.
Collapse
|
17
|
Csurös M, Miklós I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 2009; 26:2087-95. [PMID: 19570746 PMCID: PMC2726834 DOI: 10.1093/molbev/msp123] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous genes originate from a common ancestor through vertical inheritance, duplication, or horizontal gene transfer. Entire homolog families spawned by a single ancestral gene can be identified across multiple genomes based on protein sequence similarity. The sequences, however, do not always reveal conclusively the history of large families. To study the evolution of complete gene repertoires, we propose here a mathematical framework that does not rely on resolved gene family histories. We show that so-called phylogenetic profiles, formed by family sizes across multiple genomes, are sufficient to infer principal evolutionary trends. The main novelty in our approach is an efficient algorithm to compute the likelihood of a phylogenetic profile in a model of birth-and-death processes acting on a phylogeny. We examine known gene families in 28 archaeal genomes using a probabilistic model that involves lineage- and family-specific components of gene acquisition, duplication, and loss. The model enables us to consider all possible histories when inferring statistics about archaeal evolution. According to our reconstruction, most lineages are characterized by a net loss of gene families. Major increases in gene repertoire have occurred only a few times. Our reconstruction underlines the importance of persistent streamlining processes in shaping genome composition in Archaea. It also suggests that early archaeal genomes were as complex as typical modern ones, and even show signs, in the case of the methanogenic ancestor, of an extremely large gene repertoire.
Collapse
Affiliation(s)
- Miklós Csurös
- Department of Computer Science and Operations Research, University of Montréal, Montréal, Canada.
| | | |
Collapse
|
18
|
WANG JIACHEN, DASGUPTA INDRANI, FOX GEORGEE. Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. ARCHAEA (VANCOUVER, B.C.) 2009; 2:241-51. [PMID: 19478915 PMCID: PMC2686390 DOI: 10.1155/2009/971494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/31/2009] [Indexed: 01/08/2023]
Abstract
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such.
Collapse
Affiliation(s)
- JIACHEN WANG
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - INDRANI DASGUPTA
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - GEORGE E. FOX
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| |
Collapse
|
19
|
Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci U S A 2009; 106:2683-7. [PMID: 19190180 DOI: 10.1073/pnas.0808246106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transfer RNA (tRNA) is essential for decoding the genome sequence into proteins. In Archaea, previous studies have revealed unique multiple intron-containing tRNAs and tRNAs that are encoded on 2 separate genes, so-called split tRNAs. Here, we discovered 10 fragmented tRNA genes in the complete genome of the hyperthermoacidophilic Archaeon Caldivirga maquilingensis that are individually transcribed and further trans-spliced to generate all of the missing tRNAs encoding glycine, alanine, and glutamate. Notably, the 3 mature tRNA(Gly)'s with synonymous codons are created from 1 constitutive 3' half transcript and 4 alternatively switching transcripts, representing tRNA made from a total of 3 transcripts named a "tri-split tRNA." Expression and nucleotide sequences of 10 split tRNA genes and their joined tRNA products were experimentally verified. The intervening sequences of split tRNA have high identity to tRNA intron sequences located at the same positions in intron-containing tRNAs in related Thermoproteales species. This suggests that an evolutionary relationship between intron-containing and split tRNAs exists. Our findings demonstrate the first example of split tRNA genes in a free-living organism and a unique tri-split tRNA gene that provides further insight into the evolution of fragmented tRNAs.
Collapse
|
20
|
Evguenieva‐Hackenberg E, Klug G. Chapter 7 RNA Degradation in Archaea and Gram‐Negative Bacteria Different from Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:275-317. [DOI: 10.1016/s0079-6603(08)00807-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
Di Giulio M. The split genes of Nanoarchaeum equitans are an ancestral character. Gene 2008; 421:20-6. [DOI: 10.1016/j.gene.2008.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/15/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
|
22
|
Berthon J, Cortez D, Forterre P. Genomic context analysis in Archaea suggests previously unrecognized links between DNA replication and translation. Genome Biol 2008; 9:R71. [PMID: 18400081 PMCID: PMC2643942 DOI: 10.1186/gb-2008-9-4-r71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/22/2008] [Accepted: 04/09/2008] [Indexed: 11/05/2022] Open
Abstract
Specific functional interactions of proteins involved in DNA replication and/or DNA repair or transcription might occur in Archaea, suggesting a previously unrecognized regulatory network coupling DNA replication and translation, which might also exist in Eukarya. Background Comparative analysis of genomes is valuable to explore evolution of genomes, deduce gene functions, or predict functional linking between proteins. Here, we have systematically analyzed the genomic environment of all known DNA replication genes in 27 archaeal genomes to infer new connections for DNA replication proteins from conserved genomic associations. Results Two distinct sets of DNA replication genes frequently co-localize in archaeal genomes: the first includes the genes for PCNA, the small subunit of the DNA primase (PriS), and Gins15; the second comprises the genes for MCM and Gins23. Other genomic associations of genes encoding proteins involved in informational processes that may be functionally relevant at the cellular level have also been noted; in particular, the association between the genes for PCNA, transcription factor S, and NudF. Surprisingly, a conserved cluster of genes coding for proteins involved in translation or ribosome biogenesis (S27E, L44E, aIF-2 alpha, Nop10) is almost systematically contiguous to the group of genes coding for PCNA, PriS, and Gins15. The functional relevance of this cluster encoding proteins conserved in Archaea and Eukarya is strongly supported by statistical analysis. Interestingly, the gene encoding the S27E protein, also known as metallopanstimulin 1 (MPS-1) in human, is overexpressed in multiple cancer cell lines. Conclusion Our genome context analysis suggests specific functional interactions for proteins involved in DNA replication between each other or with proteins involved in DNA repair or transcription. Furthermore, it suggests a previously unrecognized regulatory network coupling DNA replication and translation in Archaea that may also exist in Eukarya.
Collapse
Affiliation(s)
- Jonathan Berthon
- Univ. Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay CEDEX, France.
| | | | | |
Collapse
|
23
|
Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245-52. [PMID: 18274537 DOI: 10.1038/nrmicro1852] [Citation(s) in RCA: 638] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).
Collapse
|
24
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
25
|
Urbonavičius J, Auxilien S, Walbott H, Trachana K, Golinelli-Pimpaneau B, Brochier-Armanet C, Grosjean H. Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer. Mol Microbiol 2007; 67:323-35. [DOI: 10.1111/j.1365-2958.2007.06047.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. Phylogenetic systematics of microorganisms inhabiting thermal environments. BIOCHEMISTRY (MOSCOW) 2007; 72:1299-312. [DOI: 10.1134/s0006297907120048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2007; 2:33. [PMID: 18042280 PMCID: PMC2222616 DOI: 10.1186/1745-6150-2-33] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/27/2007] [Indexed: 12/29/2022] Open
Abstract
Background An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs). Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes. Results New Archaeal Clusters of Orthologous Genes (arCOGs) were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon) using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome) consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA) is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile that, in addition to the core archaeal functions, encoded more idiosyncratic systems, e.g., the CASS systems of antivirus defense and some toxin-antitoxin systems. Conclusion The arCOGs provide a convenient, flexible framework for functional annotation of archaeal genomes, comparative genomics and evolutionary reconstructions. Genomic reconstructions suggest that the last common ancestor of archaea might have been (nearly) as advanced as the modern archaeal hyperthermophiles. ArCOGs and related information are available at: . Reviewers This article was reviewed by Peer Bork, Patrick Forterre, and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Prokaryotic extremophiles were the first representatives of life on Earth and they are responsible for the genesis of geological structures during the evolution and creation of all currently known ecosystems. Flexibility of the genome probably allowed life to adapt to a wide spectrum of extreme environments. As a result, modern prokaryotic diversity formed in a framework of physico-chemical factors, and it is composed of: thermophilic, psychrophilic, acidophilic, alkaliphilic, halophilic, barophilic, and radioresistant species. This artificial systematics cannot reflect the multiple actions of different environmental factors since one organism could unite characteristics of several extreme-groups. In this review we show the current status of studies in all fields of extremophiles and summarize the limits of life for different species of microbial extremophiles. We also discuss the finding of extremophiles from unusual places such as soils, and briefly review recent studies of microfossils in meteorites in the context of the significance of microbial extremophiles to Astrobiology.
Collapse
Affiliation(s)
- Elena V Pikuta
- National Space Sciences and Technology Center, NASA, Astrobiology Laboratory, Huntsville, Alabama 35805, USA.
| | | | | |
Collapse
|
29
|
Becerra A, Delaye L, Lazcano A, Orgel LE. Protein disulfide oxidoreductases and the evolution of thermophily: was the last common ancestor a heat-loving microbe? J Mol Evol 2007; 65:296-303. [PMID: 17726569 DOI: 10.1007/s00239-007-9005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 06/04/2007] [Indexed: 12/13/2022]
Abstract
Protein disulfide oxidoreductases (PDOs) are redox enzymes that catalyze dithiol-disulfide exchange reactions. Their sequences and structure reveal the presence of two thioredoxin fold units, each of which is endowed with a catalytic site CXXC motif. PDOs are the outcome of an ancient gene duplication event. They have been described in a number of thermophilic and hyperthermophilic species, where they play a critical role in the structural stabilization of intracellular proteins. PDOs are homologous to both the N-terminal domain of the bacterial alkyl hydroperoxide reductase (AhpF) and to the eukaryotic protein disulfide isomerase (PDI). Phylogenetic analysis of PDOs suggests that they first evolved in the crenarchaeota, spreading from them into the Bacteria via the euryarchaeota. These results imply that the last common ancestor (LCA) of all extant living beings lacked a PDO and argue, albeit weakly, against a thermophilic LCA.
Collapse
Affiliation(s)
- Arturo Becerra
- Facultad de Ciencias, UNAM, Apdo Postal 70-407, Cd Universitaria, 04510, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
30
|
Di Giulio M. The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 2007; 401:108-13. [PMID: 17689206 DOI: 10.1016/j.gene.2007.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 11/30/2022]
Abstract
It is suggested that the tree of life might be rooted in the domain of the Archaea, in the branch leading to the phylum of Nanoarchaeota. This hypothesis seems to be corroborated by the uniqueness and ancestrality of some traits possessed by Nanoarchaeum equitans, such as split genes separately codifying for the 5' and 3' halves of the tRNA molecule. These half genes are the oldest ancestral form of gene we have ever seen. This, along with the absence of operons from the genome of N. equitans, would seem to indicate that this genome is a molecular fossil of the evolutionary stage which the ancestral genomes had reached when the first lines of divergence were established. Moreover, the late appearance of DNA coinciding with the rooting of the universal phylogenetic tree would make the genome of N. equitans a witness to this fundamental event.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P. Castellino, 111, 80131 Naples, Napoli, Italy.
| |
Collapse
|
31
|
Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 2007; 8:86. [PMID: 17394648 PMCID: PMC1852104 DOI: 10.1186/1471-2164-8-86] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 03/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. RESULTS We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota--Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota--Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. CONCLUSION The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups.
Collapse
|
32
|
Jackson BR, Noble C, Lavesa-Curto M, Bond PL, Bowater RP. Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon "Ferroplasma acidarmanus" Fer1. Extremophiles 2006; 11:315-27. [PMID: 17136487 DOI: 10.1007/s00792-006-0041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 10/17/2006] [Indexed: 01/05/2023]
Abstract
Analysis of the genome of "Ferroplasma acidarmanus" Fer1, an archaeon that is an extreme acidophile, identified an open reading frame encoding a putative ATP-dependent DNA ligase, which we termed FaLig. The deduced amino acid sequence of FaLig contains 595 amino acids, with a predicted molecular mass of 67.8 kDa. "F. acidarmanus" Fer1 is classified as a Euryarchaeote, but phylogenetic analysis using amino acid sequences showed that FaLig is more similar to DNA ligases from Crenarchaeota, suggesting that lateral transfer of these genes has occurred among archaea. The gene sequence encoding FaLig was cloned into a bacterial expression vector harbouring an upstream His-tag to aid purification. Conditions for expression and purification from Escherichia coli were identified and recombinant FaLig was confirmed to be an ATP-dependent DNA ligase. Optimal conditions for nick-joining by the protein were pH 6-7, 0.5 mM ATP, in the presence of either Mg(2+) or Mn(2+). Using a range of nicked, double-stranded nucleic acids, ligation was detected with the same substrates as previously determined for other DNA ligases. Although FaLig is the DNA ligase from one of the most extreme acidophilic organism yet studied, this characterization suggests that its biochemical mechanism is analogous to that of enzymes from other cellular systems.
Collapse
Affiliation(s)
- Brian R Jackson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|
33
|
Ashby MK. Distribution, structure and diversity of "bacterial" genes encoding two-component proteins in the Euryarchaeota. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2006; 2:11-30. [PMID: 16877318 PMCID: PMC2685588 DOI: 10.1155/2006/562404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005) were searched for the presence of potential two-component open reading frames (ORFs) using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005) and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.
Collapse
Affiliation(s)
- Mark K Ashby
- Department of Basic Medical Sciences, Biochemistry Section, University of the West Indies, Mona Campus, Kingston 7, Jamaica.
| |
Collapse
|
34
|
Gribaldo S, Brochier-Armanet C. The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 2006; 361:1007-22. [PMID: 16754611 PMCID: PMC1578729 DOI: 10.1098/rstb.2006.1841] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Environmental surveys indicate that the Archaea are diverse and abundant not only in extreme environments, but also in soil, oceans and freshwater, where they may fulfil a key role in the biogeochemical cycles of the planet. Archaea display unique capacities, such as methanogenesis and survival at temperatures higher than 90 degrees C, that make them crucial for understanding the nature of the biota of early Earth. Molecular, genomics and phylogenetics data strengthen Woese's definition of Archaea as a third domain of life in addition to Bacteria and Eukarya. Phylogenomics analyses of the components of different molecular systems are highlighting a core of mainly vertically inherited genes in Archaea. This allows recovering a globally well-resolved picture of archaeal evolution, as opposed to what is observed for Bacteria and Eukarya. This may be due to the fact that no rapid divergence occurred at the emergence of present-day archaeal lineages. This phylogeny supports a hyperthermophilic and non-methanogenic ancestor to present-day archaeal lineages, and a profound divergence between two major phyla, the Crenarchaeota and the Euryarchaeota, that may not have an equivalent in the other two domains of life. Nanoarchaea may not represent a third and ancestral archaeal phylum, but a fast-evolving euryarchaeal lineage. Methanogenesis seems to have appeared only once and early in the evolution of Euryarchaeota. Filling up this picture of archaeal evolution by adding presently uncultivated species, and placing it back in geological time remain two essential goals for the future.
Collapse
Affiliation(s)
- Simonetta Gribaldo
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extremophiles, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
35
|
Di Giulio M. Nanoarchaeum equitans is a living fossil. J Theor Biol 2006; 242:257-60. [PMID: 16542685 DOI: 10.1016/j.jtbi.2006.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/17/2006] [Accepted: 01/27/2006] [Indexed: 11/18/2022]
|
36
|
Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci U S A 2006; 103:3669-74. [PMID: 16505372 PMCID: PMC1450140 DOI: 10.1073/pnas.0510333103] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
The division of the living world into three cellular domains, Archaea, Bacteria, and Eukarya, is now generally accepted. However, there is no consensus about the evolutionary relationships among these domains, because all of the proposed models have a number of more or less severe pitfalls. Another drawback of current models for the universal tree of life is the exclusion of viruses, otherwise a major component of the biosphere. Recently, it was suggested that the transition from RNA to DNA genomes occurred in the viral world, and that cellular DNA and its replication machineries originated via transfers from DNA viruses to RNA cells. Here, I explore the possibility that three such independent transfers were at the origin of Archaea, Bacteria, and Eukarya, respectively. The reduction of evolutionary rates following the transition from RNA to DNA genomes would have stabilized the three canonical versions of proteins involved in translation, whereas the existence of three different founder DNA viruses explains why each domain has its specific DNA replication apparatus. In that model, plasmids can be viewed as transitional forms between DNA viruses and cellular chromosomes, and the formation of different levels of cellular organization (prokaryote or eukaryote) could be traced back to the nature of the founder DNA viruses and RNA cells.
Collapse
Affiliation(s)
- Patrick Forterre
- Biologie Moléculaire du Gène Chez les Extrêmophiles, Institut Pasteur, 25, Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|