1
|
Boutillon A, Banavar SP, Campàs O. Conserved physical mechanisms of cell and tissue elongation. Development 2024; 151:dev202687. [PMID: 38767601 PMCID: PMC11190436 DOI: 10.1242/dev.202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Living organisms have the ability to self-shape into complex structures appropriate for their function. The genetic and molecular mechanisms that enable cells to do this have been extensively studied in several model and non-model organisms. In contrast, the physical mechanisms that shape cells and tissues have only recently started to emerge, in part thanks to new quantitative in vivo measurements of the physical quantities guiding morphogenesis. These data, combined with indirect inferences of physical characteristics, are starting to reveal similarities in the physical mechanisms underlying morphogenesis across different organisms. Here, we review how physics contributes to shape cells and tissues in a simple, yet ubiquitous, morphogenetic transformation: elongation. Drawing from observed similarities across species, we propose the existence of conserved physical mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Samhita P. Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
3
|
Lee SY, Chan EL, Chan HH, Li CCK, Ooi ZH, Koh RY, Liew YK. ANTIMICROBIAL AGENTS AND ANTI-ADHESION MATERIALS FOR MEDICAL AND SURGICAL GLOVES. RUBBER CHEMISTRY AND TECHNOLOGY 2021. [DOI: 10.5254/rct.21.79901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Healthcare-associated infections (HAIs) can be common in healthcare settings, such as the intensive care unit and surgical sites, if proper precautions are not followed. Although traditional techniques are encouraged, such as educating the public and healthcare workers to practice proper handwashing or to double glove, they have not been fully effective in combating HAIs. The use of surface-modified antimicrobial gloves may be an alternative approach to prevent the transmission of pathogens between healthcare workers and patients. This paper gives a comprehensive review of strategies to produce antimicrobial gloves. The chemistry of some potential chemically synthesized antimicrobial agents and nature-inspired superhydrophobic surfaces are discussed. The principles of killing microbes must be understood to effectively select these materials and to design and fabricate surfaces for the reduction of bacterial adhesion. Also, current company trends and technologies are presented for gloves proven to effectively kill bacteria. Such glove use, when coupled with in-depth research on diverse surgical procedures and medical examinations, could ease the burden of HAIs.
Collapse
Affiliation(s)
- Siang Yin Lee
- Latex Science and Technology Unit (USTL), Technology and Engineering Division (BTK), RRIM Sungai Buloh Research Station, Malaysian Rubber Board (MRB), 47000 Sungai Buloh, Selangor, Malaysia
| | - E-Lyn Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Claire Chong Khai Li
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Zhe Hooi Ooi
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Cell wall-deficient, L-form bacteria in the 21st century: a personal perspective. Biochem Soc Trans 2017; 45:287-295. [PMID: 28408469 PMCID: PMC5390494 DOI: 10.1042/bst20160435] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/19/2022]
Abstract
The peptidoglycan (PG) cell wall is a defining feature of the bacteria. It emerged very early in evolution and must have contributed significantly to the success of these organisms. The wall features prominently in our thinking about bacterial cell function, and its synthesis involves the action of several dozen proteins that are normally essential for viability. Surprisingly, it turns out to be relatively simple to generate bacterial genetic variants called L-forms that completely lack PG. They grow robustly provided that lack of the cell wall is compensated for by an osmoprotective growth medium. Although their existence has been noted and studied on and off for many decades, it is only recently that modern molecular and cellular methods have been applied to L-forms. We used Bacillus subtilis as an experimental model to understand the molecular basis for the L-form switch. Key findings included the discovery that L-forms use an unusual blebbing, or tubulation and scission mechanism to proliferate. This mechanism is completely independent of the normal FtsZ-based division machinery and seems to require only an increased rate of membrane synthesis, leading to an increased surface area-to-volume ratio. Antibiotics that block cell wall precursor synthesis, such as phosphomycin, efficiently induce the L-form switch without the need for genetic change. The same antibiotics turned out to induce a similar L-form switch in a wide range of bacteria, including Escherichia coli, in which we showed that proliferation was again FtsZ-independent. Aside from further basic science, future work on L-forms is likely to focus on their possible role in chronic or recurrent infections, their use as a model in studies of the origins of life, and possibly, biotechnological applications.
Collapse
|
5
|
Kirsebom LA, Dasgupta S, Fredrik Pettersson BM. Pleiomorphism in Mycobacterium. ADVANCES IN APPLIED MICROBIOLOGY 2016; 80:81-112. [PMID: 22794145 DOI: 10.1016/b978-0-12-394381-1.00004-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Morphological variants in mycobacterial cultures under different growth conditions, including aging of the culture, have been shown to include fibrous aggregates, biofilms, coccoids, and spores. Here we discuss the diversity in shape and size changes demonstrated by bacterial cells with special reference to pleiomorphism observed in Mycobacterium spp. in response to nutritional and other environmental stresses. Inherent asymmetry in cell division and compartmentalization of cell interior under different growth conditions might contribute toward the observed pleiomorphism in mycobacteria. The regulatory genes comprising the bacterial signaling pathway responsible for initiating morphogenesis are speculated upon from bioinformatic identifications of genes for known sensors, kinases, and phosphatases existing in mycobacterial genomes as well as on the basis of what is known in other bacteria.
Collapse
|
6
|
Bacterial cell morphogenesis does not require a preexisting template structure. Curr Biol 2014; 24:863-7. [PMID: 24704074 PMCID: PMC3989771 DOI: 10.1016/j.cub.2014.02.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022]
Abstract
Morphogenesis, the development of shape or form in cells or organisms, is a fundamental but poorly understood process throughout biology. In the bacterial domain, cells have a wide range of characteristic shapes, including rods, cocci, and spirals. The cell wall, composed of a simple meshwork of long glycan strands crosslinked by short peptides (peptidoglycan, PG) and anionic cell wall polymers such as wall teichoic acids (WTAs), is the major determinant of cell shape. It has long been debated whether the formation of new wall material or the transmission of shape from parent to daughter cells requires existing wall material as a template [1–3]. However, rigorous testing of this hypothesis has been problematical because the cell wall is normally an essential structure. L-forms are wall-deficient variants of common bacteria that have been classically identified as antibiotic-resistant variants in association with a wide range of infectious diseases [4–6]. We recently determined the genetic basis for the L-form transition in the rod-shaped bacterium Bacillus subtilis and thus how to generate L-forms reliably and reproducibly [7, 8]. Using the new L-form system, we show here that we can delete essential genes for cell wall synthesis and propagate cells in the long-term absence of a cell wall template molecule. Following genetic restoration of cell wall synthesis, we show that the ability to generate a classical rod-shaped cell is restored, conclusively rejecting template-directed models, at least for the establishment of cell shape in B. subtilis. Essential cell wall synthetic genes can be deleted in B. subtilis L-forms Reintroduction of the genes restores cell wall synthesis This is sufficient to regenerate the cell wall and correct cell morphology Cell morphogenesis does not require a preexisting cell wall template
Collapse
|
7
|
Hornus S, Lévy B, Larivière D, Fourmentin E. Easy DNA modeling and more with GraphiteLifeExplorer. PLoS One 2013; 8:e53609. [PMID: 23308263 PMCID: PMC3538550 DOI: 10.1371/journal.pone.0053609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022] Open
Abstract
The GraphiteLifeExplorer tool enables biologists to reconstruct 3D cellular complexes built from proteins and DNA molecules. Models of DNA molecules can be drawn in an intuitive way and assembled to proteins or others globular structures. Real time navigation and immersion offer a unique view to the reconstructed biological machinery.
Collapse
Affiliation(s)
- Samuel Hornus
- Equipe ALICE, Inria Nancy - Grand Est, Villers-lès-Nancy, France
| | - Bruno Lévy
- Equipe ALICE, Inria Nancy - Grand Est, Villers-lès-Nancy, France
| | - Damien Larivière
- Fourmentin-Guilbert Scientific Foundation, Noisy-Le-Grand, France
| | - Eric Fourmentin
- Fourmentin-Guilbert Scientific Foundation, Noisy-Le-Grand, France
| |
Collapse
|
8
|
Acosta F, de Pedro MA, Berenguer J. Homogeneous incorporation of secondary cell wall polysaccharides to the cell wall of Thermus thermophilus HB27. Extremophiles 2012; 16:485-95. [PMID: 22527042 DOI: 10.1007/s00792-012-0448-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/02/2012] [Indexed: 11/27/2022]
Abstract
Regular surface protein layers (S-layers) from most Gram-positive bacteria and from the ancestral bacterium Thermus thermophilus attach to pyruvylated polysaccharides (SCWP) covalently bound to the peptidoglycan through their SLH domain. However, it is not known whether the synthesis of SCWP and S-layer is coordinated enough as to follow a similar pattern of incorporation to the cell wall during growth. In this work we analyse the localization of newly synthesized SCWP on the cell wall of T. thermophilus by immunoelectron microscopy. For this, we obtained mutants with a reduced amount of pyruvylated SCWP through mutation of the csaB gene encoding the SCWP-pyruvylating activity, and its upstream gene csaA, a putative sugar transporter. We hypothesized that CsaA would be required for the synthesis of the SCWP. However, we found that csaA mutants showed only a minor decrease in the amount of SCWP immunodetected on the cell walls in comparison with csaB mutants, revealing its irrelevance in the process. Complementation experiments of csaB mutants with CsaB expressed from inducible promoters revealed that newly synthesized SCWP was homogeneously distributed along the cell wall. Fusions with thermostable fluorescent protein revealed that CsaB was distributed also in homogeneous pattern associated with the membrane. These data support that synthesis of SCWP takes place in disperse and homogeneous form all over the cell surface, in contrast to the zonal incorporation at the cell centre recently demonstrated for SlpA.
Collapse
Affiliation(s)
- Federico Acosta
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Campus de la UAM, 28049, Madrid, Spain
| | | | | |
Collapse
|
9
|
Localized synthesis of the outer envelope from Thermus thermophilus. Extremophiles 2012; 16:267-75. [DOI: 10.1007/s00792-011-0427-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
10
|
Ivanova EP, Truong VK, Webb HK, Baulin VA, Wang JY, Mohammodi N, Wang F, Fluke C, Crawford RJ. Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci Rep 2011; 1:165. [PMID: 22355680 PMCID: PMC3240996 DOI: 10.1038/srep00165] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/27/2011] [Indexed: 11/23/2022] Open
Abstract
Magnetron sputtering techniques were used to prepare molecularly smooth titanium thin films
possessing an average roughness between 0.18 nm and 0.52 nm over 5 μm × 5 μm AFM scanning
areas. Films with an average roughness of 0.52 nm or lower were found to restrict the extent
of P. aeruginosa cell attachment, with less than 0.5% of all available cells being
retained on the surface. The attachment of S. aureus cells was also limited on films
with an average surface roughness of 0.52 nm, however they exhibited a remarkable propensity
for attachment on the nano-smoother 0.18 nm average surface roughness films, with the
attachment density being almost twice as great as that observed on the nano-rougher film.
The difference in attachment behaviour can be attributed to the difference in morphology of
the rod-shaped P. aeruginosa compared to the spherical S. aureus cells.
Collapse
Affiliation(s)
- Elena P Ivanova
- Faculty of Life and Social Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
12
|
Abstract
Prokaryotes come in a wide variety of shapes, determined largely by natural selection, physical constraints, and patterns of cell growth and division. Because of their relative simplicity, bacterial cells are excellent models for how genes and proteins can directly determine morphology. Recent advances in cytological methods for bacteria have shown that distinct cytoskeletal filaments composed of actin and tubulin homologs are important for guiding growth patterns of the cell wall in bacteria, and that the glycan strands that constitute the wall are generally perpendicular to the direction of growth. This cytoskeleton-directed cell wall patterning is strikingly reminiscent of how plant cell wall growth is regulated by microtubules. In rod-shaped bacilli, helical cables of actin-like MreB protein stretch along the cell length and orchestrate elongation of the cell wall, whereas the tubulin-like FtsZ protein directs formation of the division septum and the resulting cell poles. The overlap and interplay between these two systems and the peptidoglycan-synthesizing enzymes they recruit are the major driving forces of cylindrical shapes. Round cocci, on the other hand, have lost their MreB cables and instead must grow mainly via their division septum, giving them their characteristic round or ovoid shapes. Other bacteria that lack MreB homologs or even cell walls use distinct cytoskeletal systems to maintain their distinct shapes. Here I review what is known about the mechanisms that determine the shape of prokaryotic cells.
Collapse
Affiliation(s)
- William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Thomas CR, Stenson JD, Zhang Z. Measuring the mechanical properties of single microbial cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:83-98. [PMID: 21072700 DOI: 10.1007/10_2010_84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many cells are considered to be susceptible to mechanical forces or "shear" in bioprocessing, leading to undesirable cell breakage or adverse metabolic effects. However, cell breakage is the aim of some processing operations, in particular high-pressure homogenisation and other cell disruption methods. In either case, the exact mechanisms of damage or disruption are obscure. One reason for this is that the mechanical properties of the cells are generally unknown, which makes investigation or prediction of the damage difficult. There are several methods for measuring the mechanical properties of single microbial cells, and these are reviewed briefly. In the context of bioprocessing research, a powerful method of characterising the mechanical properties of single cells is compression testing using micromanipulation, supplemented by mathematical modelling of the cell behaviour in compression. The method and associated modelling are described, with results mainly from studies on yeast cells. Continuing difficulties in making a priori predictions of cell breakage in processing are identified. In future, compression testing by micromanipulation might also be used in conjunction with other single cell analytical techniques to study mechanisms controlling form, growth and division of cells and their consequential mechanical behaviour. It ought to be possible to relate cell wall mechanics to cell wall composition and structure, and eventually to underlying gene expression, allowing much greater understanding and control of the cell mechanical properties.
Collapse
Affiliation(s)
- Colin R Thomas
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK,
| | | | | |
Collapse
|
14
|
Abstract
The gram-negative bacterial envelope is a complex extracytoplasmic compartment responsible for numerous cellular processes. Among its most important functions is its service as the protective layer separating the cytoplasmic space from the ever-changing external environment. To adapt to the diverse conditions encountered both in the environment and within the mammalian host, Escherichia coli and Salmonella species have evolved six independent envelope stress response systems . This review reviews the sE response, the CpxAR and BaeSR two-component systems (TCS) , the phage shock protein response, and the Rcs phosphorelay system. These five signal transduction pathways represent the most studied of the six known stress responses. The signal for adhesion to abiotic surfaces enters the pathway through the novel outer membrane lipoprotein NlpE, and activation on entry into the exponential phase of growth occurs independently of CpxA . Adhesion could disrupt NlpE causing unfolding of its unstable N-terminal domain, leading to activation of the Cpx response. The most recent class of genes added to the Cpx regulon includes those involved in copper homeostasis. Two separate microarray experiments revealed that exposure of E. coli cells to high levels of external copper leads to upregulation of several Cpx regulon members. The BaeSR TCS has also been shown to mediate drug resistance in Salmonella. Similar to E. coli, the Bae pathway of Salmonella enterica mediates resistance to oxacillin, novobiocin, deoxycholate, β-lactams, and indole.
Collapse
|
15
|
Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C. Bacterial cell curvature through mechanical control of cell growth. EMBO J 2009; 28:1208-19. [PMID: 19279668 DOI: 10.1038/emboj.2009.61] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 02/13/2009] [Indexed: 12/18/2022] Open
Abstract
The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Danchin A. Bacteria as computers making computers. FEMS Microbiol Rev 2009; 33:3-26. [PMID: 19016882 PMCID: PMC2704931 DOI: 10.1111/j.1574-6976.2008.00137.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/20/2008] [Accepted: 09/21/2008] [Indexed: 12/13/2022] Open
Abstract
Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments.
Collapse
Affiliation(s)
- Antoine Danchin
- Génétique des Génomes Bactériens, Institut Pasteur, Paris, France.
| |
Collapse
|
17
|
Bagchi S, Tomenius H, Belova LM, Ausmees N. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces. Mol Microbiol 2008; 70:1037-50. [PMID: 18976278 PMCID: PMC2680258 DOI: 10.1111/j.1365-2958.2008.06473.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks.
Collapse
Affiliation(s)
- Sonchita Bagchi
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | | | | | | |
Collapse
|