1
|
Hernandez-Beltran JCR, Rodríguez-Beltrán J, Aguilar-Luviano OB, Velez-Santiago J, Mondragón-Palomino O, MacLean RC, Fuentes-Hernández A, San Millán A, Peña-Miller R. Plasmid-mediated phenotypic noise leads to transient antibiotic resistance in bacteria. Nat Commun 2024; 15:2610. [PMID: 38521779 PMCID: PMC10960800 DOI: 10.1038/s41467-024-45045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.
Collapse
Affiliation(s)
- J Carlos R Hernandez-Beltran
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | | | | | - Jesús Velez-Santiago
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Craig MacLean
- Department of Biology, University of Oxford, OX1 3SZ, Oxford, UK
| | - Ayari Fuentes-Hernández
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México
| | - Alvaro San Millán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - CSIC, 28049, Madrid, Spain
| | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México.
| |
Collapse
|
2
|
Behrendt G, Vlachonikolou M, Tietgens H, Bettenbrock K. Construction and comparison of different vehicles for heterologous gene expression in Zymomonas mobilis. Microb Biotechnol 2024; 17:e14381. [PMID: 38264843 PMCID: PMC10832546 DOI: 10.1111/1751-7915.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 01/25/2024] Open
Abstract
Zymomonas mobilis has the potential to be an optimal chassis for the production of bulk chemicals derived from pyruvate. However, a lack of available standardized and characterized genetic tools hinders both efficient engineering of Z. mobilis and progress in basic research on this organism. In this study, a series of different shuttle vectors were constructed based on the replication mechanisms of the native Z. mobilis plasmids pZMO1, pZMOB04, pZMOB05, pZMOB06, pZMO7 and p29191_2 and on the broad host range replication origin of pBBR1. These plasmids as well as genomic integration sites were characterized for efficiency of heterologous gene expression, stability without selection and compatibility. We were able to show that a wide range of expression levels could be achieved by using different plasmid replicons. The expression levels of the constructs were consistent with the relative copy numbers, as determined by quantitative PCR. In addition, most plasmids are compatible and could be combined. To avoid plasmid loss, antibiotic selection is required for all plasmids except the pZMO7-based plasmid, which is stable also without selection pressure. Stable expression of reporter genes without the need for selection was also achieved by genomic integration. All modules were adapted to the modular cloning toolbox Zymo-Parts, allowing easy reuse and combination of elements. This work provides an overview of heterologous gene expression in Z. mobilis and adds a rich set of standardized genetic elements to an efficient cloning system, laying the foundation for future engineering and research in this area.
Collapse
Affiliation(s)
- Gerrich Behrendt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Maria Vlachonikolou
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Helga Tietgens
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
3
|
Kretz J, Israel V, McIntosh M. Design-Build-Test of Synthetic Promoters for Inducible Gene Regulation in Alphaproteobacteria. ACS Synth Biol 2023; 12:2663-2675. [PMID: 37561940 DOI: 10.1021/acssynbio.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inducible gene expression is useful for biotechnological applications and for studying gene regulation and function in bacteria. Many inducible systems that perform in model organisms such as the Gammaproteobacterium Escherichia coli do not perform well in other bacteria that are of biotechnological interest. Typical problems include weak or leaky expression. Here, we describe an invention named ACIT (Alphaproteobacteria chromosomally integrating transcription-control cassette) that is carried on a suicide plasmid to enable insertion into the chromosome of the host. ACIT consists of multiple DNA fragments specifically arranged in a cassette that allows tight transcription control over any gene or gene cluster of interest following homologous recombination. At the heart of the invention is the ability to modify or exchange parts, e.g., promoters, to suit particular bacteria and growth conditions, allowing for customized gene expression control. Furthermore, ACIT provides a basis for a design-build-test approach for controlling gene expression in less studied bacteria. We describe examples of its control over pigment and exopolysaccharide production, growth, cell form, and social behavior in various Alphaproteobacteria.
Collapse
Affiliation(s)
- Jonas Kretz
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| | - Vera Israel
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, IFZ, Justus-Liebig-Universität, 35292 Giessen, Germany
| |
Collapse
|
4
|
Sassi AS, Garcia-Alcala M, Aldana M, Tu Y. Protein concentration fluctuations in the high expression regime: Taylor's law and its mechanistic origin. PHYSICAL REVIEW. X 2022; 12:011051. [PMID: 35756903 PMCID: PMC9233241 DOI: 10.1103/physrevx.12.011051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein concentration in a living cell fluctuates over time due to noise in growth and division processes. In the high expression regime, variance of the protein concentration in a cell was found to scale with the square of the mean, which belongs to a general phenomenon called Taylor's law (TL). To understand the origin for these fluctuations, we measured protein concentration dynamics in single E. coli cells from a set of strains with a variable expression of fluorescent proteins. The protein expression is controlled by a set of constitutive promoters with different strength, which allows to change the expression level over 2 orders of magnitude without introducing noise from fluctuations in transcription regulators. Our data confirms the square TL, but the prefactor A has a cell-to-cell variation independent of the promoter strength. Distributions of the normalized protein concentration for different promoters are found to collapse onto the same curve. To explain these observations, we used a minimal mechanistic model to describe the stochastic growth and division processes in a single cell with a feedback mechanism for regulating cell division. In the high expression regime where extrinsic noise dominates, the model reproduces our experimental results quantitatively. By using a mean-field approximation in the minimal model, we showed that the stochastic dynamics of protein concentration is described by a Langevin equation with multiplicative noise. The Langevin equation has a scale invariance which is responsible for the square TL. By solving the Langevin equation, we obtained an analytical solution for the protein concentration distribution function that agrees with experiments. The solution shows explicitly how the prefactor A depends on strength of different noise sources, which explains its cell-to-cell variability. By using this approach to analyze our single-cell data, we found that the noise in production rate dominates the noise from cell division. The deviation from the square TL in the low expression regime can also be captured in our model by including intrinsic noise in the production rate.
Collapse
Affiliation(s)
| | - Mayra Garcia-Alcala
- Department of Molecular and Cellular Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Maximino Aldana
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Yuhai Tu
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A
| |
Collapse
|
5
|
Aroonsri A, Kongsee J, Gunawan JD, Aubry DA, Shaw PJ. A cell-based ribozyme reporter system employing a chromosomally-integrated 5' exonuclease gene. BMC Mol Cell Biol 2021; 22:20. [PMID: 33726662 PMCID: PMC7967978 DOI: 10.1186/s12860-021-00357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bioinformatic genome surveys indicate that self-cleaving ribonucleic acids (ribozymes) appear to be widespread among all domains of life, although the functions of only a small number have been validated by biochemical methods. Alternatively, cell-based reporter gene assays can be used to validate ribozyme function. However, reporter activity can be confounded by phenomena unrelated to ribozyme-mediated cleavage of RNA. Results We established a ribozyme reporter system in Escherichia coli in which a significant reduction of reporter activity is manifest when an active ribozyme sequence is fused to the reporter gene and the expression of a foreign Bacillus subtilis RNaseJ1 5′ exonuclease is induced from a chromosomally-integrated gene in the same cell. Conclusions The reporter system could be useful for validating ribozyme function in candidate sequences identified from bioinformatics. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00357-7.
Collapse
Affiliation(s)
- Aiyada Aroonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Jindaporn Kongsee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Jeremy David Gunawan
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Daniel Abidin Aubry
- School of Life Science, Indonesia International Institute for Life Sciences (i3L), Jakarta, 13210, Indonesia
| | - Philip James Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
6
|
Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson's disease treatment. J Control Release 2020; 321:519-528. [DOI: 10.1016/j.jconrel.2020.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
|
7
|
Stochastic models coupling gene expression and partitioning in cell division in Escherichia coli. Biosystems 2020; 193-194:104154. [PMID: 32353481 DOI: 10.1016/j.biosystems.2020.104154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Regulation of future RNA and protein numbers is a key process by which cells continuously best fit the environment. In bacteria, RNA and proteins exist in small numbers and their regulatory processes are stochastic. Consequently, there is cell-to-cell variability in these numbers, even between sister cells. Traditionally, the two most studied sources of this variability are gene expression and RNA and protein degradation, with evidence suggesting that the latter is subject to little regulation, when compared to the former. However, time-lapse microscopy and single molecule fluorescent tagging have produced evidence that cell division can also be a significant source of variability due to asymmetries in the partitioning of RNA and proteins. Relevantly, the impact of this noise differs from noise in production and degradation since, unlike these, it is not continuous. Rather, it occurs at specific time points, at which moment it can introduce major fluctuations. Several models have now been proposed that integrate noise from cell division, in addition to noise in gene expression, to mimic the dynamics of RNA and protein numbers of cell lineages. This is expected to be particularly relevant in genetic circuits, where significant fluctuations in one component protein, at specific time moments, are expected to perturb near-equilibrium states of the circuits, which can have long-lasting consequences. Here we review stochastic models coupling these processes in Escherichia coli, from single genes to small circuits.
Collapse
|
8
|
Evolutionary model for the unequal segregation of high copy plasmids. PLoS Comput Biol 2019; 15:e1006724. [PMID: 30835726 PMCID: PMC6420036 DOI: 10.1371/journal.pcbi.1006724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2019] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
Plasmids are extrachromosomal DNA elements of microorganisms encoding beneficial genetic information. They were thought to be equally distributed to daughter cells during cell division. Here we use mathematical modeling to investigate the evolutionary stability of plasmid segregation for high-copy plasmids—plasmids that are present in up to several hundred copies per cell—carrying antibiotic resistance genes. Evolutionary stable strategies (ESS) are determined by numerical analysis of a plasmid-load structured population model. The theory predicts that the evolutionary stable segregation strategy of a cell depends on the plasmid copy number: For low and medium plasmid load, both daughters receive in average an equal share of plasmids, while in case of high plasmid load, one daughter obtains distinctively and systematically more plasmids. These findings are in good agreement with recent experimental results. We discuss the interpretation and practical consequences. In the last years, it becomes more and more clear that heterogeneity in isogenic bacterial populations is rather the rule than the exception. This observation is interesting as it reveals the complex social life of bacteria, and also because of tremendous practical implications in medicine, biotechnology, and ecology. The central questions in this field are the identification of the underlying proximate causes (molecular mechanisms) on the one hand and on the other hand the identification of ultimate causes (evolutionary forces) that shape the social life of bacteria. We focus on plasmid dynamics, in particular on plasmid segregation. Recent experiments showed that plasmid segregation depends on the plasmid load. We identify possible evolutionary factors that shaped this process. It turns out that the ambivalence in the effect of plasmids—advantageous if present in low copy numbers, a metabolic burden if present in high copy numbers—is able to explain the experimental observations. The experimental findings can be interpreted as a variant of the principle of division of labor, as it is well known from e.g. persister cells or sporulation. Our model extends the theory of unequal segregation of damage to the ambivalent role of plasmids. Similarly, it is known that certain gene regulatory proteins are acting in a dose-dependent manner. Due to differences in their cellular concentrations and in their affinities to various target promoters, differential gene expression patterns are achieved. Consequently, tight concentration control is observed [1]. Another example is the strict copy-dependent utilization of autolysins during cell division. These enzymes carefully open the bacterial cell wall to allow for its extension [2]. Overproduction of these enzymes leads to cell lysis [3]. These molecules are in principle also candidates for a segregation characteristic similar to that of high copy plasmids described here.
Collapse
|
9
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
10
|
Nikolic N, Schreiber F, Dal Co A, Kiviet DJ, Bergmiller T, Littmann S, Kuypers MMM, Ackermann M. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet 2017; 13:e1007122. [PMID: 29253903 PMCID: PMC5773225 DOI: 10.1371/journal.pgen.1007122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/18/2018] [Accepted: 11/22/2017] [Indexed: 12/05/2022] Open
Abstract
While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. This study addresses a fundamental question in bacterial metabolism: do all individuals in a clonal population express the same metabolic functions, or do individuals specialize on different metabolic functions and assimilate different substrates? Reports about stochastic gene expression in bacterial populations raise the possibility that transcriptional differences between individuals translate into different metabolic behaviors, but the prevalence and magnitude of such effects is currently not known. Here, we quantified the assimilation of two isotope-labeled sugars by single Escherichia coli cells using nanometer-scale secondary ion mass spectrometry, an analytical approach seldom used in systems biology. By comparing sugar assimilation and gene expression dynamics, we were able to differentiate the metabolic profiles of individual cells. We observed a previously hidden level of cell-to-cell variation in metabolism: cells differed both in the total amount of sugar they assimilated, as well as with respect to which of the two sugars they preferentially assimilated. Intriguingly, a cell’s preference in sugar assimilation was only partially based on specialization in gene expression. Taken together, this study is a step towards understanding the magnitude and the relevance of metabolic differences between genetically identical cells.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- * E-mail: (NN); (MA)
| | - Frank Schreiber
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Division of Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Alma Dal Co
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Daniel J. Kiviet
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Tobias Bergmiller
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel M. M. Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- * E-mail: (NN); (MA)
| |
Collapse
|
11
|
Kreft JU, Plugge CM, Prats C, Leveau JHJ, Zhang W, Hellweger FL. From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance of Individuality. Front Microbiol 2017; 8:2299. [PMID: 29230200 PMCID: PMC5711835 DOI: 10.3389/fmicb.2017.02299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023] Open
Abstract
Models are important tools in microbial ecology. They can be used to advance understanding by helping to interpret observations and test hypotheses, and to predict the effects of ecosystem management actions or a different climate. Over the past decades, biological knowledge and ecosystem observations have advanced to the molecular and in particular gene level. However, microbial ecology models have changed less and a current challenge is to make them utilize the knowledge and observations at the genetic level. We review published models that explicitly consider genes and make predictions at the population or ecosystem level. The models can be grouped into three general approaches, i.e., metabolic flux, gene-centric and agent-based. We describe and contrast these approaches by applying them to a hypothetical ecosystem and discuss their strengths and weaknesses. An important distinguishing feature is how variation between individual cells (individuality) is handled. In microbial ecosystems, individual heterogeneity is generated by a number of mechanisms including stochastic interactions of molecules (e.g., gene expression), stochastic and deterministic cell division asymmetry, small-scale environmental heterogeneity, and differential transport in a heterogeneous environment. This heterogeneity can then be amplified and transferred to other cell properties by several mechanisms, including nutrient uptake, metabolism and growth, cell cycle asynchronicity and the effects of age and damage. For example, stochastic gene expression may lead to heterogeneity in nutrient uptake enzyme levels, which in turn results in heterogeneity in intracellular nutrient levels. Individuality can have important ecological consequences, including division of labor, bet hedging, aging and sub-optimality. Understanding the importance of individuality and the mechanism(s) underlying it for the specific microbial system and question investigated is essential for selecting the optimal modeling strategy.
Collapse
Affiliation(s)
- Jan-Ulrich Kreft
- Centre for Computational Biology, Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Clara Prats
- Department of Physics, School of Agricultural Engineering of Barcelona, Universitat Politècnica de Catalunya-BarcelonaTech, Castelldefels, Spain
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ferdi L Hellweger
- Civil and Environmental Engineering Department, Marine and Environmental Sciences Department, Bioengineering Department, Northeastern University, Boston, MA, United States
| |
Collapse
|
12
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
13
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
14
|
Guo Y, Stärk HJ, Hause G, Schmidt M, Harms H, Wick LY, Müller S. Heterogenic response of prokaryotes toward silver nanoparticles and ions is facilitated by phenotypes and attachment of silver aggregates to cell surfaces. Cytometry A 2017; 91:775-784. [PMID: 28110496 DOI: 10.1002/cyto.a.23055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022]
Abstract
Tons of anthropogenic silver nanoparticles (AgNPs) are assumed to be released into the environment due to their use in many consumer products. AgNPs are known to be toxic toward microorganisms and thus may harm their specific functions in ecosystems. Here we explore the impact of AgNPs on functioning of single cells in microbial populations at doses typically found in anthropogenic environments. The response of single cells to AgNPs was analyzed by flow cytometry and using the fluorescent dyes propidium iodide and DiBAC4 (3) as markers for cell membrane disintegration and depolarization, respectively. The effects of 10-nm and 30-nm AgNPs on three bacterial species (Mycobacterium frederiksbergense, Pseudomonas putida, and Escherichia coli) showed that the populations split into affected cells and others not showing any malfunction, with varying abundances depending on strains and cell growth states. Further, the dissolution of AgNPs measured with 3 KDa ultrafiltration and inductively coupled plasma-mass-spectrometry to distinguish particle-related effects from toxicity of dissolved Ag revealed that Ag ions were the principal toxicant. AgNP aggregate formation was followed by dynamic light scattering and the aggregates' attachment to cell surfaces was visualized by transmission electron microscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy. An increased AgNP-affected cell fraction relative to the Ag ion impact was identified. The study shows that individual cells in a population cope differently with AgNP induced stress by evolving heterogeneous phenotypes. The response is linked to cell death and cell energy depletion depending on cell type and cell growth states. The attachment of AgNP aggregates to cell surfaces seems to amplify the heterogeneous response. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yuting Guo
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Hans J Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Gerd Hause
- Biocenter of the Martin-Luther-University Halle-Wittenberg, Halle, Saale, 06120, Gemany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, 04318, Germany
| |
Collapse
|
15
|
Jahn M, Vorpahl C, Hübschmann T, Harms H, Müller S. Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR. Microb Cell Fact 2016; 15:211. [PMID: 27993152 PMCID: PMC5168713 DOI: 10.1186/s12934-016-0610-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Background Plasmids are widely used for molecular cloning or production of proteins in laboratory and industrial settings. Constant modification has brought forth countless plasmid vectors whose characteristics in terms of average plasmid copy number (PCN) and stability are rarely known. The crucial factor determining the PCN is the replication system; most replication systems in use today belong to a small number of different classes and are available through repositories like the Standard European Vector Architecture (SEVA). Results In this study, the PCN was determined in a set of seven SEVA-based expression plasmids only differing in the replication system. The average PCN for all constructs was determined by Droplet Digital PCR and ranged between 2 and 40 per chromosome in the host organism Escherichia coli. Furthermore, a plasmid-encoded EGFP reporter protein served as a means to assess variability in reporter gene expression on the single cell level. Only cells with one type of plasmid (RSF1010 replication system) showed a high degree of heterogeneity with a clear bimodal distribution of EGFP intensity while the others showed a normal distribution. The heterogeneous RSF1010-carrying cell population and one normally distributed population (ColE1 replication system) were further analyzed by sorting cells of sub-populations selected according to EGFP intensity. For both plasmids, low and highly fluorescent sub-populations showed a remarkable difference in PCN, ranging from 9.2 to 123.4 for ColE1 and from 0.5 to 11.8 for RSF1010, respectively. Conclusions The average PCN determined here for a set of standardized plasmids was generally at the lower end of previously reported ranges and not related to the degree of heterogeneity. Further characterization of a heterogeneous and a homogeneous population demonstrated considerable differences in the PCN of sub-populations. We therefore present direct molecular evidence that the average PCN does not represent the true number of plasmid molecules in individual cells. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0610-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Jahn
- Helmholtz-Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.,School of Biotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Carsten Vorpahl
- Helmholtz-Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz-Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Helmholtz-Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Susann Müller
- Helmholtz-Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
16
|
Lindmeyer M, Jahn M, Vorpahl C, Müller S, Schmid A, Bühler B. Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains. Front Microbiol 2015; 6:1042. [PMID: 26483771 PMCID: PMC4589675 DOI: 10.3389/fmicb.2015.01042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pivotal challenges in industrial biotechnology are the identification and overcoming of cell-to-cell heterogeneity in microbial processes. While the development of subpopulations of isogenic cells in bioprocesses is well described (intra-population variability), a possible variability between genetically identical cultures growing under macroscopically identical conditions (clonal variability) is not. A high such clonal variability has been found for the recombinant expression of the styrene monooxygenase genes styAB from Pseudomonas taiwanensis VLB120 in solvent-tolerant Pseudomonas putida DOT-T1E using the alk-regulatory system from P. putida GPo1. In this study, the oxygenase subunit StyA fused to eGFP was used as readout tool to characterize the population structure in P. putida DOT-T1E regarding recombinant protein content. Flow cytometric analyses revealed that in individual cultures, at least two subpopulations with highly differing recombinant StyA-eGFP protein contents appeared (intra-population variability). Interestingly, subpopulation sizes varied from culture-to-culture correlating with the specific styrene epoxidation activity of cells derived from respective cultures (clonal variability). In addition, flow cytometric cell sorting coupled to plasmid copy number (PCN) determination revealed that detected clonal variations cannot be correlated to the PCN, but depend on the combination of the regulatory system and the host strain employed. This is, to the best of our knowledge, the first work reporting that intra-population variability (with differing protein contents in the presented case study) causes clonal variability of genetically identical cultures. Respective impacts on bioprocess reliability and performance and strategies to overcome respective reliability issues are discussed.
Collapse
Affiliation(s)
- Martin Lindmeyer
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany
| | - Michael Jahn
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Carsten Vorpahl
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| |
Collapse
|