1
|
Viana KF, Sperandio NDC, Neto FB, Donatele DM, de Souza AB, Dos Santos AGV, Rivas AV, Barcellos ECDA, Martins IVF. Safety and Immunogenicity of an FhSAMS Vaccine Against Fasciola hepatica in Dairy Cattle. Parasite Immunol 2024; 46:e13074. [PMID: 39513742 DOI: 10.1111/pim.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Fasciolosis is a parasitosis of great importance for livestock, as well as for public health, as it is considered by the WHO as a neglected disease. Disease control is complex and reinfections make the use of therapeutic products an unsustainable method from an economic, environmental and health point of view. The aim of this study was to evaluate a new vaccine formulation for dairy cattle, containing soluble Fasciola hepatica antigens associated with Montanide 763 AVG and saponin adjuvants (FhSAMS). The vaccine was tested with two protocols, a single dose and a booster dose 6 months after the first dose. The FhSAMS vaccine proved to be safe, with no side effects. Furthermore, it was able to generate a more robust humoral immune response when a six-month booster dose was used, in addition to stimulating greater production of IFN-ʏ, indicating a Th1 profile immune stimulus.
Collapse
Affiliation(s)
- Kelvinson Fernandes Viana
- Vaccine Development Technology Laboratory, Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Puerto Rico, Brazil
| | | | - Felipe Berbari Neto
- Department of Veterinary Medicine, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Dirlei Molinari Donatele
- Department of Veterinary Medicine, Federal University of Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Adrieli Barboza de Souza
- Vaccine Development Technology Laboratory, Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Puerto Rico, Brazil
| | - Angelo Gabriel Vidal Dos Santos
- Vaccine Development Technology Laboratory, Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Puerto Rico, Brazil
| | - Açucena Veleh Rivas
- Vaccine Development Technology Laboratory, Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Puerto Rico, Brazil
| | - Ema Carolina de Almeida Barcellos
- Vaccine Development Technology Laboratory, Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration, Foz do Iguaçu, Puerto Rico, Brazil
| | | |
Collapse
|
2
|
Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS One 2022; 17:e0276287. [PMID: 36240154 PMCID: PMC9565688 DOI: 10.1371/journal.pone.0276287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. forsteri genome was performed using Illumina short-read and Oxford Nanopore long-read technologies. The sequences were assembled de novo using a hybrid of short and long reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138). The assembly was also relatively complete and unfragmented, comprising 66% and 7.2% complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUSCOs), respectively. A large portion (> 55%) of the genome was made up of intergenic repetitive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of which are homologous to published sequences of other species. The identification of select putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is discussed. This is the first genome assembly of any aporocotylid, a major step toward understanding of the biology of this family of fish blood flukes and their interactions within hosts.
Collapse
|
3
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
4
|
Pérez-Caballero R, Martínez-Moreno FJ, Corripio-Miyar Y, McNeilly TN, Cwiklinski K, Dalton JP, Zafra R, Pérez J, Martínez-Moreno Á, Buffoni L. Antigen-specific response of CD4 + T cells and hepatic lymph node cells to Fasciola hepatica-derived molecules at the early and late stage of the infection in sheep. Vet Res 2021; 52:99. [PMID: 34215335 PMCID: PMC8254349 DOI: 10.1186/s13567-021-00963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
The immunomodulatory capacity of F. hepatica antigens is probably one of the main reasons for the development of a driven non-protective Th2 immune response. In this study, we analysed the cellular response of hepatic lymph node cells and CD4+ T cells in terms of proliferative response, efficiency of antigen presentation and cytokine production, to F. hepatica-derived molecules, at early and late stages of the infection. Thirty-one sheep were allocated into five groups and were slaughtered at 16 dpi and 23 wpi. In order to analyse antigen-specific response, the following F. hepatica recombinant molecules were used: rFhCL1, rFhCL2, rFhCL3, rFhCB1, rFhCB2, rFhCB3, rFhStf-1, rFhStf-2, rFhStf-3 and rFhKT1. A cell proliferation assay using hepatic lymph node cells and an antigen presentation cell assay using CD4+ T cells were performed. At 16 dpi, all molecules but rFhStf-2 and rFhKT1 elicited a significant cell proliferative response on hepatic lymph node cells of infected animals. At both early and late stage of the infection, antigen presentation of rFhCB3 and rFhCL2 resulted in higher stimulation index of CD4+ T cells which was IL-2 mediated, although no statistically significant when compared to uninfected animals. Significant cytokine production (IL-4, IL-10 and IFN-γ) was conditioned by the antigen-specific cell stimulation. No CD4+ T cell exhaustion was detected in infected sheep at the chronic stage of the infection. This study addressed antigen-specific response to F. hepatica-derived molecules that are involved in key aspects of the parasite survival within the host.
Collapse
Affiliation(s)
- Raúl Pérez-Caballero
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - F Javier Martínez-Moreno
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain.
| | - Yolanda Corripio-Miyar
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Midlothian, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, Midlothian, UK
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Rafael Zafra
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - José Pérez
- Department of Anatomy, Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| | - Leandro Buffoni
- Department of Animal Health (Parasitology and Parasitic Diseases), Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, Ctra.Madrid-Cádiz, km 396, 14014, Córdoba, Spain
| |
Collapse
|
5
|
Dorey A, Cwiklinski K, Rooney J, De Marco Verissimo C, López Corrales J, Jewhurst H, Fazekas B, Calvani NED, Hamon S, Gaughan S, Dalton JP, Lalor R. Autonomous Non Antioxidant Roles for Fasciola hepatica Secreted Thioredoxin-1 and Peroxiredoxin-1. Front Cell Infect Microbiol 2021; 11:667272. [PMID: 34026663 PMCID: PMC8131638 DOI: 10.3389/fcimb.2021.667272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis) in humans and their livestock. Infection of the host involves invasion through the intestinal wall followed by migration in the liver that results in extensive damage, before the parasite settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies revealed that increased metabolic stress during the rapid growth and development of F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system. In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx), which then reduces and activates peroxiredoxin (Prx), whose major function is to protect cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and Prx1 far out-weighs (>50-fold) other members of their family, and both are major components of the parasite secretome. While Prx1 possesses a leader signal peptide that directs its secretion through the classical pathway and explains why this enzyme is found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an alternative pathway that packages the majority of this enzyme into extracellular vesicles (EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the parasite’s stress-inducible thiol-dependant cascade, but play autonomous roles in defence against the general anti-pathogen oxidative burst by innate immune cells, in the modulation of host immune responses and regulation of inflammation.
Collapse
Affiliation(s)
- Amber Dorey
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - James Rooney
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Barbara Fazekas
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Siobhán Gaughan
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
6
|
Recent Progress in the Development of Liver Fluke and Blood Fluke Vaccines. Vaccines (Basel) 2020; 8:vaccines8030553. [PMID: 32971734 PMCID: PMC7564142 DOI: 10.3390/vaccines8030553] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Liver flukes (Fasciola spp., Opisthorchis spp., Clonorchis sinensis) and blood flukes (Schistosoma spp.) are parasitic helminths causing neglected tropical diseases that result in substantial morbidity afflicting millions globally. Affecting the world’s poorest people, fasciolosis, opisthorchiasis, clonorchiasis and schistosomiasis cause severe disability; hinder growth, productivity and cognitive development; and can end in death. Children are often disproportionately affected. F. hepatica and F. gigantica are also the most important trematode flukes parasitising ruminants and cause substantial economic losses annually. Mass drug administration (MDA) programs for the control of these liver and blood fluke infections are in place in a number of countries but treatment coverage is often low, re-infection rates are high and drug compliance and effectiveness can vary. Furthermore, the spectre of drug resistance is ever-present, so MDA is not effective or sustainable long term. Vaccination would provide an invaluable tool to achieve lasting control leading to elimination. This review summarises the status currently of vaccine development, identifies some of the major scientific targets for progression and briefly discusses future innovations that may provide effective protective immunity against these helminth parasites and the diseases they cause.
Collapse
|
7
|
Differentially Expressed Homologous Genes Reveal Interspecies Differences of Paragonimus Proliferus based on Transcriptome Analysis. Helminthologia 2020; 57:196-210. [PMID: 32855607 PMCID: PMC7425231 DOI: 10.2478/helm-2020-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
Paragonimus proliferus (P. proliferus), one of 46 Paragonimus species registered in the National Center for Biotechnology Information database, may be much more widely distributed in Southeast Asia than previously thought, as its reported natural foci have increased in the past decades. However, very little is known about its molecular biology, especially at the transcriptome level. For the first time, the transcriptome of this species was sequenced and compared with four other common Paragonimus species, namely Paragonimus skrjabini, Paragonimus kellicotti, Paragonimus miyazakii, and Paragonimus westermani, to predict homologous genes and differentially expressed homologous genes to explore interspecies differences of Paragonimus proliferus. A total of 7393 genes were found to be significantly differentially expressed. Of these, 49 were considered to be core genes because they were differentially expressed in all four comparison groups. Annotations revealed that these genes were related mainly to "duplication, transcription, or translation", energy or nutrient metabolism, and parasitic growth, proliferation, motility, invasion, adaptation to the host, or virulence. Interestingly, a majority (5601/7393) of the identified genes, and in particular the core genes (48/49), were expressed at lower levels in P. proliferus. The identified genes may play essential roles in the biological differences between Paragonimus species. This work provides fundamental background information for further research into the molecular biology of P. proliferus.
Collapse
|