1
|
Chaúque BJM, da Silva TCB, Rott EB, Rott FB, Leite APMC, Benitez GB, Neuana NF, Goldim JR, Rott MB, Zanette RA. Effectiveness of phytoproducts against pathogenic free-living amoebae - A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025; 182:106404. [PMID: 39922391 DOI: 10.1016/j.fitote.2025.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/10/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Infections caused by free-living amoebae (FLA) have increased worldwide and are expected to worsen. The lack of drugs that are effective (especially against cysts), affordable, and safe to treat these infections exacerbates the concern. Plants present a promising source of bioactive compounds for developing effective drugs; however, the scientific literature on this topic has yet to be adequately synthesized. This work provides a critical scoping review summarizing the amoebicidal performance of plant-derived products and their potential for developing effective drugs to treat FLA infections. Out of 5889 articles retrieved from multiple databases, 119 articles were selected, from which data on 180 plant species belonging to 127 genera and 62 families were extracted. The extracts, essential oils, and compounds from these plants exhibited a diverse range of potency against cysts and trophozoites. Among the compounds studied, periglaucine A, kolavenic acid, and (+)-elatol are promising cysticidal drug candidates due to their high potency, as well as their known low toxicity to non-target cells. Tovophillin A, gartinin, 8-deoxygartinin, garcinone E, 9-hydroxycalabaxanthone, γ-mangostin, and borneol also exhibit high cysticidal potency, but their selectivity profile is unknown. Resveratrol, rosmarinic acid, β-amyrin, and vanillic acid stand out for their high potency against trophozoites and low toxicity to mammalian cells. Another group of compounds with similarly high trophocidal potency includes (-)-epicatechin, (-)-epigallocatechin, apigenin, costunolide, demethoxycurcumin, kaempferol, methyl-β-orcinolcarboxylate, sakuraetin, (+)-elatol, debromolaurinterol, luteolin, (-)-rogiolol, cystomexicone B, epigallocatechin gallate, quercetin, and α-bisabolol. These compounds are priority candidates for further studies on in vivo efficacy, safety, pharmacokinetics, and pharmacodynamics.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique.
| | - Thaisla Cristiane Borella da Silva
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Felipe Brittes Rott
- Faculty of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | - Neuana Fernando Neuana
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique; Department of Mechanical and Materials Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - José Roberto Goldim
- Postdoctoral fellow at Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Rio Grande do Sul, Brazil.
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, N 2600, 90035-002 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences, Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Pruksaphon K, Amsri A, Jeenkeawpieam J, Thammasit P, Nosanchuk JD, Youngchim S. The microbial damage and host response framework: lesson learned from pathogenic survival trajectories and immunoinflammatory responses of Talaromyces marneffei infection. Front Immunol 2024; 15:1448729. [PMID: 39188728 PMCID: PMC11345217 DOI: 10.3389/fimmu.2024.1448729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
The adverse outcomes of fungal infection in mammalian hosts depend on the complex interactions between the host immune system and pathogen virulence-associated traits. The main clinical problems arise when the host response is either too weak to effectively eliminate the pathogen or overly aggressive, resulting in host tissue damage rather than protection. This article will highlight current knowledge regarding the virulence attributions and mechanisms involved in the dual-sided role of the host immune system in the immunopathogenesis of the thermally dimorphic fungus Talaromyces marneffei through the lens of the damage response framework (DRF) of microbial pathogenesis model.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Artid Amsri
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
4
|
Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010011. [PMID: 36671583 PMCID: PMC9854718 DOI: 10.3390/bioengineering10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The unexpected appearance of the monkeypox virus and the extensive geographic dispersal of cases have prompted researchers to concentrate on potential therapeutic approaches. In addition to its vaccine build techniques, there should be some multiple integrated antiviral active compounds because of the MPV (monkeypox virus) outbreak in 2022. This study offers a computational engineering-based de novo drug discovery mediated by random antiviral active compounds that were screened against the virulent protein MPXVgp169, as one of the key players directing the pathogenesis of the virus. The screening of these candidates was supported by the use of 72 antiviral active compounds. The top candidate with the lowest binding affinity was selected for the engineering of chains or atoms. Literature assisted to identify toxic chains or atoms that were impeding the stability and effectiveness of antiviral compounds to modify them for enhanced efficacy. With a binding affinity of -9.4 Kcal/mol after chain, the lipophilicity of 0.41, the water solubility of 2.51 as soluble, and synthetic accessibility of 6.6, chain-engineered dolutegravir was one of the best active compounds, as proved by the computational engineering analysis. This study will revolutionize the era of drug engineering as a potential therapeutic strategy for monkeypox infection.
Collapse
|
5
|
Abstract
Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
Drummond RA, Obar JJ. Editorial overview: Niche-specific and species-specific host-fungal interactions - how do they impact human health? Curr Opin Microbiol 2021; 64:162-165. [PMID: 34696987 DOI: 10.1016/j.mib.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom.
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|