1
|
Thakor A, Charles TC. Recombinant DNA: unlocking untapped microbial potential for innovation in crop agriculture. Trends Biotechnol 2025; 43:533-539. [PMID: 40015250 DOI: 10.1016/j.tibtech.2025.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/01/2025]
Abstract
The Asilomar Conference on Recombinant DNA, held in 1975, established guidelines for recombinant DNA (rDNA) research and laid the foundation for biotechnology regulations. While rDNA has driven significant advancements in pharmaceutical and crop biotechnology, the commercialization of plant-beneficial microbials developed using rDNA has lagged behind. This disparity may be attributed to a cumbersome regulatory framework shaped by the perception that rDNA products pose biosafety risks. To unlock the full potential of rDNA technology in addressing global challenges, regulatory reform for rDNA-derived microbial products for crop plants that reduce reliance on chemical fertilizers and pesticides is essential. Streamlining these barriers will enable greater societal benefits from microbial solutions in agriculture and beyond.
Collapse
Affiliation(s)
| | - Trevor C Charles
- University of Waterloo, Waterloo, Ontario, Canada; Metagenom Bio Life Science Inc., Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol 2025; 23:9-23. [PMID: 39147829 DOI: 10.1038/s41579-024-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Global research on the plant microbiome has enhanced our understanding of the complex interactions between plants and microorganisms. The structure and functions of plant-associated microorganisms, as well as the genetic, biochemical, physical and metabolic factors that influence the beneficial traits of plant microbiota have also been intensively studied. Harnessing the plant microbiome has led to the development of various microbial applications to improve crop productivity in the face of a range of challenges, for example, climate change, abiotic and biotic stresses, and declining soil properties. Microorganisms, particularly nitrogen-fixing rhizobia as well as mycorrhizae and biocontrol agents, have been applied for decades to improve plant nutrition and health. Still, there are limitations regarding efficacy and consistency under field conditions. Also, the wealth of expanding knowledge on microbiome diversity, functions and interactions represents a huge source of information to exploit for new types of application. In this Review, we explore plant microbiome functions, mechanisms, assembly and types of interaction, and discuss current applications and their pitfalls. Furthermore, we elaborate on how the latest findings in plant microbiome research may lead to the development of new or more advanced applications. Finally, we discuss research gaps to fully leverage microbiome functions for sustainable plant production.
Collapse
Affiliation(s)
| | | | - Tanja Kostić
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Günter Brader
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | | |
Collapse
|
3
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
5
|
Tsumori C, Matsuo S, Murai Y, Kai K. Quorum Sensing-Dependent Invasion of Ralstonia solanacearum into Fusarium oxysporum Chlamydospores. Microbiol Spectr 2023; 11:e0003623. [PMID: 37367297 PMCID: PMC10433826 DOI: 10.1128/spectrum.00036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Strains of the Ralstonia solanacearum species complex (RSSC), although known as the causative agent of bacterial wilt disease in plants, induce the chlamydospores of many fungal species and invade them through the spores. The lipopeptide ralstonins are the chlamydospore inducers produced by RSSC and are essential for this invasion. However, no mechanistic investigation of this interaction has been conducted. In this study, we report that quorum sensing (QS), which is a bacterial cell-cell communication, is important for RSSC to invade the fungus Fusarium oxysporum (Fo). ΔphcB, a deletion mutant of QS signal synthase, lost the ability to both produce ralstonins and invade Fo chlamydospores. The QS signal methyl 3-hydroxymyristate rescued these disabilities. In contrast, exogenous ralstonin A, while inducing Fo chlamydospores, failed to rescue the invasive ability. Gene-deletion and -complementation experiments revealed that the QS-dependent production of extracellular polysaccharide I (EPS I) is essential for this invasion. The RSSC cells adhered to Fo hyphae and formed biofilms there before inducing chlamydospores. This biofilm formation was not observed in the EPS I- or ralstonin-deficient mutant. Microscopic analysis showed that RSSC infection resulted in the death of Fo chlamydospores. Altogether, we report that the RSSC QS system is important for this lethal endoparasitism. Among the factors regulated by the QS system, ralstonins, EPS I, and biofilm are important parasitic factors. IMPORTANCE Ralstonia solanacearum species complex (RSSC) strains infect both plants and fungi. The phc quorum-sensing (QS) system of RSSC is important for parasitism on plants, because it allows them to invade and proliferate within the hosts by causing appropriate activation of the system at each infection step. In this study, we confirm that ralstonin A is important not only for Fusarium oxysporum (Fo) chlamydospore induction but also for RSSC biofilm formation on Fo hyphae. Extracellular polysaccharide I (EPS I) is also essential for biofilm formation, while the phc QS system controls these factors in terms of production. The present results advocate a new QS-dependent mechanism for the process by which a bacterium invades a fungus.
Collapse
Affiliation(s)
- Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Shoma Matsuo
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Yuta Murai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Mukherjee S, Basak A, Chakraborty A, Goswami R, Ray K, Ali MN, Santra S, Hazra AK, Tripathi S, Banerjee H, Layek J, Panwar AS, Ravisankar N, Ansari MA, Chatterjee G. Revisiting the oldest manure of India, Kunapajala: Assessment of its animal waste recycling potential as a source of plant biostimulant. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1073010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
India's oldest documented manure, most commonly referred to as Kunapajala, has a long history of over 1,000 years in crop cultivation. Kunapajala is primarily an in-situ decomposition technology of animal waste and can potentially provide an eco-friendly pipeline for recycling bio-waste into essential plant nutrients. This traditional animal manure, in addition, also contains dairy excreta (e.g., feces and urine), dairy products (e.g., milk and ghee), natural resources (e.g., honey), broken seeds or grains, and their non-edible by-product waste. Here, we aimed to assess the waste recycling and plant biostimulant potential of Kunapajala prepared from livestock (e.g., Black Bengal goats) or fish (e.g., Bombay duck) post-processed wastes over different decomposition periods, e.g., (0, 30, 60, and 90-days). In this study, an in-situ quantification of livestock- (lKPJ) and fish-based Kunapajala (fKPJ) reveals a dynamic landscape of essential plant primary nutrients, e.g., (0.70 > NH4-N < 3.40 g•L−1), (100.00 > P2O5 < 620.00 mg•L−1), and (175.00 > K2O < 340.00 mg•L−1), including other physico-chemical attributes of Kunapajala. Using correlation statistics, we find that the plant-available nutrient content of Kunapajala depicts a significant (p < 0.0001) transformation over decomposition along with microbial dynamics, abundance, and diversities, delineating a microbial interface to animal waste decomposition and plant growth promotion. Importantly, this study also reports the indole 3-acetic acid (IAA) content (40.00 > IAA < 135.00 mg•L−1) in Kunapajala. Furthermore, the bacterial screening based on plant growth-promoting traits and their functional analyses elucidate the mechanism of the plant biostimulant potential of Kunapajala. This assay finally reports two best-performing plant growth-promoting bacteria (e.g., Pseudomonas chlororaphis and Bacillus subtilis) by the 16S ribotyping method. In support, in-planta experiments have demonstrated, in detail, the bio-stimulative effects of Kunapajala, including these two bacterial isolates alone or in combination, on seed germination, root-shoot length, and other important agronomic, physio-biochemical traits in rice. Together, our findings establish that Kunapajala can be recommended as a source of plant biostimulant to improve crop quality traits in rice. Overall, this work highlights Kunapajala, for the first time, as a promising low-cost microbial technology that can serve a dual function of animal waste recycling and plant nutrient recovery to promote sustainable intensification in agroecosystems.
Collapse
|
7
|
Arnao MB, Hernández-Ruiz J, Cano A. Role of Melatonin and Nitrogen Metabolism in Plants: Implications under Nitrogen-Excess or Nitrogen-Low. Int J Mol Sci 2022; 23:ijms232315217. [PMID: 36499543 PMCID: PMC9741234 DOI: 10.3390/ijms232315217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a new plant hormone involved in multiple physiological functions in plants such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others. Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated. Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.
Collapse
|