1
|
Tran T, Diniz MO, Dransart E, Gey A, Merillon N, Lone YC, Godefroy S, Sibley C, Ferreira LC, Medioni J, Oudard S, Johannes L, Tartour E. A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu-Expressing Tumor in HLA-A2 Transgenic Mice. Clin Cancer Res 2016; 22:4133-44. [PMID: 27006496 DOI: 10.1158/1078-0432.ccr-16-0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/06/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE E75, a peptide derived from the Her2/neu protein, is the most clinically advanced vaccine approach against breast cancer. In this study, we aimed to optimize the E75 vaccine using a delivery vector targeting dendritic cells, the B-subunit of Shiga toxin (STxB), and to assess the role of various parameters (Her2/neu expression, combination with trastuzumab) in the efficacy of this cancer vaccine in a relevant preclinical model. EXPERIMENTAL DESIGN We compared the differential ability of the free E75 peptide or the STxB-E75 vaccine to elicit CD8(+) T cells, and the impact of the vaccine on murine HLA-A2 tumors expressing low or high levels of Her2/neu. RESULTS STxB-E75 synergized with granulocyte macrophage colony-stimulating factors and CpG and proved to be more efficient than the free E75 peptide in the induction of multifunctional and high-avidity E75-specific anti-CD8(+) T cells resulting in a potent tumor protection in HLA-A2 transgenic mice. High expression of HER2/neu inhibited the expression of HLA-class I molecules, leading to a poor recognition of human or murine tumors by E75-specific cytotoxic CD8(+) T cells. In line with these results, STxB-E75 preferentially inhibited the growth of HLA-A2 tumors expressing low levels of Her2/neu. Coadministration of anti-Her2/neu mAb potentiated this effect. CONCLUSIONS STxB-E75 vaccine is a potent candidate to be tested in patients with low Her2/neu-expressing tumors. It could also be indicated in patients expressing high levels of Her2/neu and low intratumoral T-cell infiltration to boost the recruitment of T cells-a key parameter in the efficacy of anti-Her2/neu mAb therapy. Clin Cancer Res; 22(16); 4133-44. ©2016 AACR.
Collapse
Affiliation(s)
- Thi Tran
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mariana O Diniz
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Estelle Dransart
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit. INSERM, U 1143. CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Alain Gey
- Service d'Immunologie biologique, Hopital Européen Georges Pompidou-APHP, Paris, France
| | - Nathalie Merillon
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - Yu Chun Lone
- Inserm U-1014, Université Paris XI, Groupe Hospitalier Paul-Brousse, France
| | | | | | - Luis Cs Ferreira
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacques Medioni
- Service d'Oncologie Médicale, Hopital Européen Georges Pompidou, Paris, France
| | - Stephane Oudard
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Service d'Oncologie Médicale, Hopital Européen Georges Pompidou, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit. INSERM, U 1143. CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes, Sorbonne Paris-Cité, Paris, France. Equipe Labellisée Ligue Contre le Cancer, Paris, France. Service d'Immunologie biologique, Hopital Européen Georges Pompidou-APHP, Paris, France.
| |
Collapse
|
2
|
Nizard M, Diniz MO, Roussel H, Tran T, Ferreira LC, Badoual C, Tartour E. Mucosal vaccines: novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum Vaccin Immunother 2015; 10:2175-87. [PMID: 25424921 DOI: 10.4161/hv.29269] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites.
Collapse
Affiliation(s)
- Mevyn Nizard
- a INSERM U970; Universite Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | | | | | | | | | | | | |
Collapse
|