1
|
Jiménez-Ortega RF, Alejandre-Aguilar R, Rivas N, Sánchez F, Sánchez-Muñoz F, Ballinas-Verdugo MA. Ninoa T. cruzi Strain Modifies the Expression of microRNAs in Cardiac Tissue and Plasma During Chagas Disease Infection. Pathogens 2024; 13:1127. [PMID: 39770386 PMCID: PMC11679500 DOI: 10.3390/pathogens13121127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chronic chagasic cardiomyopathy is the most severe clinical manifestation of Chagas disease, which affects approximately seven million people worldwide. Latin American countries bear the highest burden, with the greatest morbidity and mortality rates. Currently, diagnostic methods do not provide information on the risk of progression to severe stages of the disease. Recently, microRNAs (miRNAs) have been proposed as promising tools for monitoring the progression of Chagas disease. This study aimed to analyze the expression profiles of the miRNAs miR-1, miR-16, miR-208, and miR-208b in cardiac tissue, plasma, and plasma extracellular vesicles from Ninoa TcI-infected mice during the acute and indeterminate phases of Chagas disease. Methods: The cardiac-specific miRNAs and miR-16 levels were examined in all samples using RT-qPCR. Additionally, pathway analysis was performed to investigate the impact of potential miRNA target genes across various databases. Results: Elevated miR-208b expression was observed in cardiac tissue and plasma during the acute phase. Bioinformatic analysis identified three pathways implicated in disease progression: phosphatidylinositol 3-kinase signaling, Fc gamma receptor-mediated phagocytosis, and leukocyte transendothelial migration, as well as cholinergic synapse pathways. Conclusions: MiR-208b was upregulated during the acute phase and downregulated in the indeterminate phase, suggesting it may play a crucial role in disease progression.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec 55210, Estado de México, Mexico
| | - Ricardo Alejandre-Aguilar
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico; (R.A.-A.); (N.R.)
| | - Nancy Rivas
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico; (R.A.-A.); (N.R.)
| | - Fausto Sánchez
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico;
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico
| | - Martha A. Ballinas-Verdugo
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez (INCICH), Mexico City 14080, Mexico
| |
Collapse
|
2
|
Oliveira DSD, Leite ALJ, Pedrosa TCF, Mota LWR, Costa GDP, Souza DMSD, Perucci LO, Talvani A. Insights into IL-33 on inflammatory response during in vitro infection by Trypanosoma cruzi. Immunobiology 2022; 227:152243. [PMID: 35839730 DOI: 10.1016/j.imbio.2022.152243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
Inflammatory and regulatory cytokines play an important role in the immunopathogenesis of Trypanosoma cruzi infection. Interleukin (IL)-33 is a member of the IL-1 superfamily of cytokines whose expression/production is upregulated following pro-inflammatory stimulation to alert the immune system in response to tissue stress or damage. The aim of this study was to evaluate the inflammatory profile induced in cultured J774 cells stimulated or not with IL-33 (10 ng/mL), with live parasites (1 × 106 metacyclic trypomastigote forms) and/or total antigen, TcAg (100 µg/mL) and with both, IL-33 and TcAg/T. cruzi. The cultures were evaluated at 24 h and 48 h after addition of the stimuli. For this, the supernatants were collected for the measurement of TNF, IL-17, CCL2, and IL-10 by ELISA and of nitrite by the Griess method. TNF, IL-17, and CCL2 concentrations were elevated in the presence of TcAg or live T. cruzi parasites at 24 h, and the addition of IL-33 potentiated these effects at 48 h. In addition, the T. cruzi-amastigote forms reduced in those infected J774 cells stimulated with IL-33 at 48 h. In conclusion, the IL-33 elevated the production of the TNF, IL-17, and CCL2 in cultured J774 cells stimulated with T. cruzi and/or its antigen and reduced the intracellular parasites, providing impetus to new investigations on its potential actions on the parasite-induced inflammation.
Collapse
Affiliation(s)
- Daniela Silva de Oliveira
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Ana Luísa Junqueira Leite
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Tamiles Caroline Fernandes Pedrosa
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Biological Science Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Ludmilla Walter Reis Mota
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Nucleus of Research on Biological Sciences Federal University of Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Nucleus of Research on Biological Sciences Federal University of Ouro Preto, Brazil.
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, DECBI, Institute of Exact and Biological Sciences Federal University of Ouro Preto, Brazil; Health and Nutrition Post-Graduate Program Federal University of Ouro Preto, Brazil; Health Sciences, Infectology and Tropical Medicine Post-Graduate Program Federal University of Minas Gerais, Brazil.
| |
Collapse
|
3
|
Martins FA, Dos Santos MA, Santos JDG, da Silva AA, Borges BC, da Costa MS, Tavares PCB, Teixeira SC, Brígido RTES, Teixeira TL, Rodrigues CC, Silva NSDL, de Oliveira RC, de Faria LC, Lemes MR, Zanon RG, Tomiosso TC, Machado JR, da Silva MV, Oliveira CJF, da Silva CV. The Recombinant Form of Trypanosoma cruzi P21 Controls Infection by Modulating Host Immune Response. Front Immunol 2020; 11:1010. [PMID: 32655546 PMCID: PMC7325895 DOI: 10.3389/fimmu.2020.01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.
Collapse
Affiliation(s)
- Flávia Alves Martins
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Marlus Alves Dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Júlia de Gouveia Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna Cristina Borges
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mylla Spirandelli da Costa
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rebecca Tavares E Silva Brígido
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cassiano Costa Rodrigues
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Rayane Cristina de Oliveira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Laura Caroline de Faria
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Marcela Rezende Lemes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Renata Graciele Zanon
- Departamento de Anatomia Humana, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tatiana Carla Tomiosso
- Setor de Histologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Juliana Reis Machado
- Departamento de Patologia, Genética e Evolução, Universidade Federal do Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
4
|
Could angiotensin-modulating drugs be relevant for the treatment of Trypanosoma cruzi infection? A systematic review of preclinical and clinical evidence. Parasitology 2019; 146:914-927. [PMID: 30782223 DOI: 10.1017/s003118201900009x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractAlthough leucocytes are targets of renin-angiotensin system (RAS) effector molecules and RAS-modulating drugs exert immunomodulatory effects, their impact onTrypanosoma cruziinfection remains poorly understood. By using the framework of a systematic review, we integrated the preclinical and clinical evidence to investigate the relevance of angiotensin-inhibiting drugs onT. cruziinfections. From a comprehensive and structured search in biomedical databases, only original studies were analysed. In preclinical and clinical studies, captopril, enalapril and losartan were RAS-modulating drugs used. The mainin vitrofindings indicated that these drugs increased parasite uptake per host cells, IL-12 expression by infected dendritic cells and IFN-γby T lymphocytes, in addition to attenuating IL-10 and IL-17 production by CD8 + T cells. In animal models, reduced parasitaemia, tissue parasitism, leucocytes infiltration and mortality were often observed inT. cruzi-infected animals receiving RAS-modulating drugs. In patients with Chagas’ disease, these drugs exerted a controversial impact on cytokine and hormone levels, and a limited effect on cardiovascular function. Considering a detailed evaluation of reporting and methodological quality, the current preclinical and clinical evidence is at high risk of bias, and we hope that our critical analysis will be useful in mitigating the risk of bias in further studies.
Collapse
|
5
|
Novaes RD, Gonçalves RV, Penitente AR, Cupertino MC, Maldonado IR, Talvani A, Natali AJ. Parasite control and skeletal myositis in Trypanosoma cruzi-infected and exercised rats. Acta Trop 2017; 170:8-15. [PMID: 28223068 DOI: 10.1016/j.actatropica.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
Non-pharmacological strategies have been rarely described in the treatment of infectious diseases. Although exercise training has been recently incorporated in the clinical management of Chagas disease, the rationale basis that supports this indication is poorly understood. Thus, we investigated the effect of an aerobic exercise on the parasitism, inflammation and oxidative tissue damage in a murine model of Trypanosoma cruzi-induced skeletal myositis. Wistar rats were randomized into four groups: trained not infected (TNI) and infected (TI), sedentary not infected (SNI) and infected (SI). A running training program was administered 5days/week for 9 weeks. Then, infected animals were inoculated with T. cruzi and followed up for another 9 weeks. Exercise training induced beneficial adaptations by increasing time to fatigue and lactate threshold in TNI and TI animals. SI animals presented higher parasitemia, skeletal muscle parasitism, cell necrosis, leukocyte infiltration, cytokines levels, reactive oxygen species and nitric oxide production, thiobarbituric acid reactive substances, carbonyl proteins, myosin heavy chain I depletion, and increased catalase (CAT) and superoxide dismutase (SOD) activities. Beyond attenuation in all these variables, TI animals showed reduced TNF-α, CCL-2/MCP-1 and CX3CL1, and increased IL-10 muscle levels. Furthermore, these animals presented higher CAT and SOD activities and reduced lipid and protein oxidation. Taken together, our findings indicated that exercise training induced a protective phenotype in T. cruzi-infected mice, enhancing host defenses against the parasite and attenuating the pathological remodeling associated with skeletal myositis, aspects potentially associated to an improved immunological and redox balance in infected animals.
Collapse
|
6
|
Abstract
Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.
Collapse
|
7
|
Abstract
Alterations to blood-brain barrier (BBB) adhesion molecules and junctional integrity during neuroinflammation can promote central nervous system (CNS) pathology. The chemokine CCL2 is elevated during CNS inflammation and is associated with endothelial dysfunction. The effects of CCL2 on endothelial adherens junctions (AJs) have not been defined. We demonstrate that CCL2 transiently induces Src-dependent disruption of human brain microvascular endothelial AJ. β-Catenin is phosphorylated and traffics from the AJ to PECAM-1 (platelet endothelial cell adhesion molecule-1), where it is sequestered at the membrane. PECAM-1 is also tyrosine-phosphorylated, an event associated with recruitment of the phosphatase SHP-2 (Src homology 2 domain-containing protein phosphatase) to PECAM-1, β-catenin release from PECAM-1, and reassociation of β-catenin with the AJ. Surface localization of PECAM-1 is increased in response to CCL2. This may enable the endothelium to sustain CCL2-induced alterations in AJ and facilitate recruitment of leukocytes into the CNS. Our novel findings provide a mechanism for CCL2-mediated disruption of endothelial junctions that may contribute to BBB dysfunction and increased leukocyte recruitment in neuroinflammatory diseases.
Collapse
|
8
|
Talvani A, Teixeira MM. Inflammation and Chagas disease some mechanisms and relevance. ADVANCES IN PARASITOLOGY 2011; 76:171-94. [PMID: 21884892 DOI: 10.1016/b978-0-12-385895-5.00008-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chagas cardiomyopathy is caused by infection with flagellated protozoan Trypanosoma cruzi. In patients, there is a fine balance between control of the replication and the intensity of the inflammatory response so that the host is unable to eliminate the parasite resulting in the parasite persisting as a lifelong infection in most individuals. However, the parasite persists in such a way that it causes no or little disease. This chapter reviews our understanding of many of the mediators of inflammation and cells which are involved in the inflammatory response of mammals to T. cruzi infection. Particular emphasis is given to the role of chemokines, endothelin and lipid mediators. Understanding the full range of mediators and cells present and how they interact with each other in Chagas disease may shed light on how we modulate disease pathogenesis and define new approaches to treat or prevent the disease.
Collapse
|
9
|
In vivo infection by Trypanosoma cruzi: the conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Parasitology 2010; 138:481-92. [PMID: 21040619 DOI: 10.1017/s0031182010001411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas' disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 μg/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7·6-fold), heart (3-fold) and small intestine (3·6-fold). Moreover, an intense inflammatory response and increment of CD4+ T cells (1·7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4+CD25+FoxP3+ T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas' disease.
Collapse
|
10
|
Lannes-Vieira J, Silverio JC, Pereira IR, Vinagre NF, Carvalho CME, Paiva CN, Silva AAD. Chronic Trypanosoma cruzi-elicited cardiomyopathy: from the discovery to the proposal of rational therapeutic interventions targeting cell adhesion molecules and chemokine receptors - how to make a dream come true. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:226-35. [DOI: 10.1590/s0074-02762009000900029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023] Open
|
11
|
Cyclic AMP decreases the production of NO and CCL2 by macrophages stimulated with Trypanosoma cruzi GPI-mucins. Parasitol Res 2008; 104:1141-8. [PMID: 19093132 DOI: 10.1007/s00436-008-1300-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
Abstract
Glycosylphosphatidylinositol-anchored mucin-like glycoproteins (tGPI-mucin) present on the surface of the cellular membrane of Trypanosoma cruzi forms activate toll-like receptors 2 (TLR2) on the surface of immune cells and induce the release of several mediators of inflammation which may be relevant in the context of Chagas disease. Here, we evaluated the ability of tGPI-mucins to activate murine peritoneal macrophages to induce nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1/CCL2). We also investigated the ability of compounds which increase or mimic cyclic adenosine monophosphate (AMP) to modulate the production of NO and CCL2. Our data show that elevation of intracellular levels of cyclic AMP prevents the release of NO and CCL2 induced by tGPI-mucins in macrophages. Overall, the release of CCL2 was decreased to a greater extent and at lower concentrations of cyclic AMP-modifying agents than the production of NO. It is suggested that the elevation of cyclic AMP during T. cruzi infection may modify the release of pro-inflammatory mediators and alter significantly the course of T. cruzi infection.
Collapse
|