1
|
Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1435054. [PMID: 39253090 PMCID: PMC11381234 DOI: 10.3389/fimmu.2024.1435054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic inflammatory processes in the oral mucosa and periodontitis are common disorders caused by microflora and microbial biofilms. These factors activate both the innate and adaptive immune systems, leading to the production of pro-inflammatory cytokines. Cytokines are known to play a crucial role in the pathogenesis of gingivitis and periodontitis and have been proposed as biomarkers for diagnosis and follow-up of these diseases. They can activate immune and stromal cells, leading to local inflammation and tissue damage. This damage can include destruction of the periodontal ligaments, gingiva, and alveolar bone. Studies have reported increased local levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor (TNF), IL-6, IL-17, and IL-23, in patients with periodontitis. In experimental models of periodontitis, TNF and the IL-23/IL-17 axis play a pivotal role in disease pathogenesis. Inactivation of these pro-inflammatory pathways through neutralizing antibodies, genetic engineering or IL-10 function has been demonstrated to reduce disease activity. This review discusses the role of cytokines in gingivitis and periodontitis, with particular emphasis on their role in mediating inflammation and tissue destruction. It also explores new therapeutic interventions that offer potential for research and clinical therapy in these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Neurath
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Kinane DF, Lappin DF, Culshaw S. The role of acquired host immunity in periodontal diseases. Periodontol 2000 2024. [PMID: 38641953 DOI: 10.1111/prd.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The aim of this narrative review is to relate the contribution of European researchers to the complex topic of the host immune system in periodontal disease, focusing on acquired immunity. Other chapters in this volume will address the genetics and autoantibody responses and other forms of immunity to periodontal disease. While the contribution of European authors is the focus, global literature is included in this descriptive narrative for contextual clarity, albeit many with European co-authors. The topic is relatively intense and is thus broken down into sections outlined below, tackled as descriptive narratives to enhance understanding. Any attempt at a systematic or scoping review was quickly abandoned given the descriptive nature and marked variation of approach in almost all publications. Even the most uniform area of this acquired periodontal immunology literature, antibody responses to putative pathogens in periodontal diseases, falls short of common structures and common primary outcome variables one would need and expect in clinical studies, where randomized controlled clinical trials (RCTs) abound. Addressing 'the host's role' in immunity immediately requires a discussion of host susceptibility, which necessitates consideration of genetic studies (covered elsewhere in the volume and superficially covered here).
Collapse
|
3
|
Jaber Y, Netanely Y, Naamneh R, Saar O, Zubeidat K, Saba Y, Georgiev O, Kles P, Barel O, Horev Y, Yosef O, Eli-Berchoer L, Nadler C, Betser-Cohen G, Shapiro H, Elinav E, Wilensky A, Hovav AH. Langerhans cells shape postnatal oral homeostasis in a mechanical-force-dependent but microbiota and IL17-independent manner. Nat Commun 2023; 14:5628. [PMID: 37699897 PMCID: PMC10497507 DOI: 10.1038/s41467-023-41409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
The postnatal interaction between microbiota and the immune system establishes lifelong homeostasis at mucosal epithelial barriers, however, the barrier-specific physiological activities that drive the equilibrium are hardly known. During weaning, the oral epithelium, which is monitored by Langerhans cells (LC), is challenged by the development of a microbial plaque and the initiation of masticatory forces capable of damaging the epithelium. Here we show that microbial colonization following birth facilitates the differentiation of oral LCs, setting the stage for the weaning period, in which adaptive immunity develops. Despite the presence of the challenging microbial plaque, LCs mainly respond to masticatory mechanical forces, inducing adaptive immunity, to maintain epithelial integrity that is also associated with naturally occurring alveolar bone loss. Mechanistically, masticatory forces induce the migration of LCs to the lymph nodes, and in return, LCs support the development of immunity to maintain epithelial integrity in a microbiota-independent manner. Unlike in adult life, this bone loss is IL-17-independent, suggesting that the establishment of oral mucosal homeostasis after birth and its maintenance in adult life involve distinct mechanisms.
Collapse
Affiliation(s)
- Yasmin Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmine Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Reem Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Khaled Zubeidat
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Olga Georgiev
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Paz Kles
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Or Barel
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yael Horev
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Omri Yosef
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Chen Nadler
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, Hadassah Medical Center, Jerusalem, Israel
| | - Gili Betser-Cohen
- Division of Identification and Forensic Science, Police National HQ, Jerusalem, Israel
| | - Hagit Shapiro
- System Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- System Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Microbe & Cancer Division, DKFZ, Heidelberg, Germany
| | - Asaf Wilensky
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
4
|
Yuan Y, Zhang H, Gu Q, Xu X, Yu R, Huang H. Analysis of Th-cell subsets in local and systemic environments from experimental periodontitis rats. Mol Oral Microbiol 2023; 38:83-92. [PMID: 35863754 DOI: 10.1111/omi.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The objective of this study was to explore the effect of periodontitis on Th-cell subsets in local and systemic environments. METHODS A total of 32 male Sprague-Dawley rats were randomly divided into periodontitis and control groups. Silk ligatures were applied to the mandibular first (M1) molars in the periodontitis group. Inflammation and alveolar bone loss around the M1 molars were analyzed by histological staining and microcomputed tomography. The mRNA expression of interferon-γ (IFN-γ), interleukin 4 (IL-4), IL-17, and IL-10 in the gingiva was measured by qRT-PCR. The proportions of Th1, Th2, Th17, and Treg cells in the submandibular lymph nodes, peripheral blood, and jaw bone marrow were tested using flow cytometry. RESULTS More inflammatory cells and alveolar bone resorption were found in the periodontitis group, with upregulated mRNA expression of IFN-γ, IL-17, and IL-10. The proportion of Th1 and Th17 cells was significantly elevated in submandibular lymph nodes, and the proportion of Th1, Th2, and Th17 cells was significantly elevated in peripheral blood, while the proportion of Th1, Th17, and Treg cells was significantly elevated in jaw bone marrow in the periodontitis group. CONCLUSION This study suggests that periodontitis affects the differentiation of Th-cell subsets in both local and systemic environments, resulting in an increased proportion of proinflammatory cells.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hongming Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qinhua Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinrui Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runping Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Prieto D, Pino-Lagos K, Realini O, Cáceres F, Retamal I, Chaparro A. Relationship between soluble neuropilin-1 in the gingival crevicular fluid of early pregnant women and different severities of periodontitis: A cross-sectional study. J Oral Biol Craniofac Res 2023; 13:321-326. [PMID: 36891285 PMCID: PMC9988399 DOI: 10.1016/j.jobcr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pregnancy exacerbates the periodontal inflammation; however, the biological mediators involved are not well characterized. Neuropilins (NRPs) are transmembrane glycoproteins involved in physiological and pathogenic processes such as angiogenesis and immunity but its relationship with periodontal disease in pregnant women has not been studied. Objective To explore the soluble Neuropilin-1 (sNRP-1) levels in gingival crevicular fluid (GCF) samples during early pregnancy and its association with the periodontitis severity and periodontal clinical parameters. Methods 80 pregnant women were recruited, and GCF samples were collected. Clinical data and periodontal clinical parameters were recorded. sNRP-1 expression was determined by ELISA assay. The relationship between sNRP-1(+) pregnant women with the severity of periodontitis and periodontal clinical parameters was determined by Kruskal-Wallis and Mann-Whitney tests. Spearman's test estimated the correlation between sNRP-1 levels and periodontal clinical parameters. Results Periodontitis was classified as mild in 27.5% (n = 22) women, moderate in 42.5% (n = 34), and severe in 30% (n = 24). sNRP-1 expression was higher in the GCF of pregnant with severe (41.67%) and moderate (41.17%) periodontitis compared than in those with mild periodontitis (18.8%). The sNRP-1(+) pregnant had a higher BOP (76.5% v/s 57%; p = 0.0071) and PISA (1199.5 mm2 v/s 880.2 mm2; p = 0.0282) compared with sNRP-1(-). A positive correlation between sNRP-1 levels in GCF and BOP (p = 0.0081) and PISA (p = 0.0398) was observed. Conclusions The results suggest that sNRP-1 could be involved in periodontal inflammation during pregnancy.
Collapse
Affiliation(s)
- Diego Prieto
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Ornella Realini
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Felipe Cáceres
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Ignacio Retamal
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Alejandra Chaparro
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| |
Collapse
|
6
|
Polarization Profiles of T Lymphocytes and Macrophages Responses in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:195-208. [PMID: 35612799 DOI: 10.1007/978-3-030-96881-6_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Periodontitis is a multifactorial, chronic inflammatory disease affecting the supporting structures of teeth triggered by the complex interactions between a dysbiotic bacterial biofilm and the host's immune response that results in the characteristic loss of periodontal attachment and alveolar bone. The differential phenotypic presentations of periodontitis emerge from inter-individual differences in immune response regulatory mechanisms. The monocyte-macrophage system has a crucial role in innate immunity and the initiation of the T and B lymphocyte adaptive immune responses. Macrophages involve a heterogeneous cell population that shows wide plasticity and differentiation dynamics. In response to the inflammatory milieu, they can skew at the time of TLR ligation to predominant M1 -pro-inflammatory- or M2 -anti-inflammatory/healing- functional phenotypes. The perpetuation of inflammation by M1 macrophages leads to the recruitment of the adaptive immune response, promoting Th1, Th17, and Th22 differentiation, which are directly associated with periodontal breakdown. In contrast, M2 macrophages induce Th2 and Treg responses which are associated with periodontal homeostasis. In this article, we review the recent advances comprising the role of macrophages and lymphocyte polarization profiles and their reprogramming as potential therapeutic strategies. For this purpose, we reviewed the available literature targeting periodontitis, macrophage, and lymphocyte subpopulations with an emphasis in the later 5 years. The active reprogramming of macrophages and lymphocytes polarization crosstalk opens a promising area for therapeutic development.
Collapse
|
7
|
Maulani C, Auerkari EI, Masulili SLC, Kusdhany LS, Soeroso Y, Soedarsono N. Interferon-Gamma (IFNg) +874A/T Polymorphism Does Not Significantly Affect the Severity of Periodontitis. Eur J Dent 2021; 16:327-332. [PMID: 34784626 PMCID: PMC9339941 DOI: 10.1055/s-0041-1735434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Interferon-gamma (IFNg) is an immune-regulatory cytokine with a role in host responses to periodontitis. Genetic factors have been reported to modify the corresponding protein expression. The objective of this study was to evaluate the association and role of IFNg polymorphisms, such as IFNg +874 A/T, and the susceptibility to periodontitis. MATERIALS AND METHODS A total of 100 unrelated subjects were included in the present study. Genomic deoxyribonucleic acid (DNA) was obtained from peripheral blood of 43 patients with mild periodontitis and 57 patients with severe periodontitis. The determined clinical parameters of periodontitis included probing depth, clinical attachment loss, and papilla bleeding index. The oral hygiene indicators were also assessed. The level of IFNg was determined from the gingival crevicular fluid by enzyme-linked immunosorbent assay technique. The IFNg +874 A/T polymorphisms were analyzed from peripheral blood by the method of restriction fragment length polymorphism-polymerase chain reaction. STATISTICAL ANALYSIS Statistical analysis of the results was conducted using chi-squared testing for categorical data. Independent t-tests and Mann-Whitney U tests were used for numeric data. Kruskal-Wallis testing was used to compare genotypes concerning for IFNg +874 A/T polymorphism. A p-value < 0.05 was assumed for statistical significance. RESULTS Analysis of the IFNg +874 A/T polymorphism showed no significant differences with the level of IFNg. No significant differences were observed either in IFNg +874 A/T polymorphism between the subjects with mild periodontitis and those with severe periodontitis (p > 0.05). The subjects with severe periodontitis showed marginally but not significantly higher levels of IFNg compared with subjects with mild periodontitis (p > 0.05). CONCLUSION The polymorphism of IFNg +874 A/T was not associated with the level of IFNg nor with the risk of periodontitis in this study.
Collapse
Affiliation(s)
| | - Elza Ibrahim Auerkari
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Lelyati C Masulili
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Lindawati S Kusdhany
- Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Nurtami Soedarsono
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Hatasa M, Yoshida S, Takahashi H, Tanaka K, Kubotsu Y, Ohsugi Y, Katagiri T, Iwata T, Katagiri S. Relationship between NAFLD and Periodontal Disease from the View of Clinical and Basic Research, and Immunological Response. Int J Mol Sci 2021; 22:3728. [PMID: 33918456 PMCID: PMC8038294 DOI: 10.3390/ijms22073728] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by pathogenic oral microorganisms that leads to the destruction of alveolar bone and connective tissues around the teeth. Although many studies have shown that periodontal disease is a risk factor for systemic diseases, such as type 2 diabetes and cardiovascular diseases, the relationship between nonalcoholic fatty liver disease (NAFLD) and periodontal disease has not yet been clarified. Thus, the purpose of this review was to reveal the relationship between NAFLD and periodontal disease based on epidemiological studies, basic research, and immunology. Many cross-sectional and prospective epidemiological studies have indicated that periodontal disease is a risk factor for NAFLD. An in vivo animal model revealed that infection with periodontopathic bacteria accelerates the progression of NAFLD accompanied by enhanced steatosis. Moreover, the detection of periodontopathic bacteria in the liver may demonstrate that the bacteria have a direct impact on NAFLD. Furthermore, Porphyromonas gingivalis lipopolysaccharide induces inflammation and accumulation of intracellular lipids in hepatocytes. Th17 may be a key molecule for explaining the relationship between periodontal disease and NAFLD. In this review, we attempted to establish that oral health is essential for systemic health, especially in patients with NAFLD.
Collapse
Affiliation(s)
- Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sumiko Yoshida
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
- Liver Center, Saga University Hospital, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yoshihito Kubotsu
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (K.T.); (Y.K.)
| | - Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan;
- Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (M.H.); (S.Y.); (Y.O.); (T.I.)
| |
Collapse
|
10
|
Tonsillar Microbiota: a Cross-Sectional Study of Patients with Chronic Tonsillitis or Tonsillar Hypertrophy. mSystems 2021; 6:6/2/e01302-20. [PMID: 33688019 PMCID: PMC8547005 DOI: 10.1128/msystems.01302-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic tonsillitis (CT) and tonsillar hypertrophy (TH) are common tonsillar diseases that are related to infection and inflammation. Little is known about tonsillar microbiota and its role in CT and TH. This study aims to identify palatine tonsillar microbiota both on the surface and in the core tissues of CT and TH patients. In total, 22 palatine tonsils were removed and collected from CT and TH patients who underwent surgery. The surface and core microbiota in the tonsils of CT and TH patients were compared using 16S rRNA gene sequencing of V3-V4 regions. Differential tonsillar microbiotas were found in the CT versus TH patients and surface versus core tissues. Further, a higher relative abundance of bacterial genera, including Haemophilus, Streptococcus, Neisseria, Capnocytophaga, Kingella, Moraxella, and Lachnospiraceae [G-2] in patients with TH and Dialister, Parvimonas, Bacteroidales [G-2], Aggregatibacter, and Atopobium in patients with CT, was observed. Of these, the differential genera of Dialister, Parvimonas, and Neisseria served as key factors in the tonsillar microbiota network. Notably, four representable tonsillar microbial types were identified, with one, consisting of a higher abundance of Haemophilus and Neisseria, exclusively detected in the TH patients. This study analyzed the different tonsillar microbiota from the surface and core tissues of CT and TH patients. Several bacteria and various microbial types related to CT and TH were identified, along with potential bacterial networks and related immune pathways. IMPORTANCE The human microbiota has been shown to be functionally connected to infectious and inflammation-related diseases. So far, only limited studies had been performed on tonsillar microbiota, although tonsils play an essential role in the human immune defense system and encountered numerous microorganisms. Our work presented different tonsillar microbiota from surface and core tissues of chronic tonsillitis (CT) and tonsillar hypertrophy (TH) patients. Notably, one tonsillar microbiota type, which contains a higher abundance of Haemophilus and Neisseria, was only detected in the TH patients. Furthermore, certain bacteria, such as Haemophilus, Neisseria, Dialister, and Parvimonas, may serve as microbial biomarkers to discriminate CT patients from TH patients. These data provide important microbiota data in the tonsillar research area and are highly useful for researchers both in the oral microbiome field and clinical field.
Collapse
|
11
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|
13
|
Monasterio G, Castillo F, Astorga J, Hoare A, Terraza-Aguirre C, Cafferata EA, Villablanca EJ, Vernal R. O-Polysaccharide Plays a Major Role on the Virulence and Immunostimulatory Potential of Aggregatibacter actinomycetemcomitans During Periodontal Infection. Front Immunol 2020; 11:591240. [PMID: 33193431 PMCID: PMC7662473 DOI: 10.3389/fimmu.2020.591240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative oral bacterium with high immunostimulatory and pathogenic potential involved in the onset and progression of periodontitis, a chronic disease characterized by aberrant immune responses followed by tooth-supporting bone resorption, which eventually leads to tooth loss. While several studies have provided evidence related to the virulence factors of A. actinomycetemcomitans involved in the host cell death and immune evasion, such as its most studied primate-specific virulence factor, leukotoxin, the role of specific lipopolysaccharide (LPS) domains remain poorly understood. Here, we analyzed the role of the immunodominant domain of the LPS of A. actinomycetemcomitans termed O-polysaccharide (O-PS), which differentiates the distinct bacterial serotypes based on its antigenicity. To determine the role of the O-PS in the immunogenicity and virulence of A. actinomycetemcomitans during periodontitis, we analyzed the in vivo and in vitro effect of an O-PS-defective transposon mutant serotype b strain, characterized by the deletion of the rmlC gene encoding the α-L-rhamnose sugar biosynthetic enzyme. Induction of experimental periodontitis using the O-PS-defective rmlC mutant strain resulted in lower tooth-supporting bone resorption, infiltration of Th1, Th17, and Th22 lymphocytes, and expression of Ahr, Il1b, Il17, Il23, Tlr4, and RANKL (Tnfsf11) in the periodontal lesions as compared with the wild-type A. actinomycetemcomitans strain. In addition, the O-PS-defective rmlC mutant strain led to impaired activation of antigen-presenting cells, with less expression of the co-stimulatory molecules CD40 and CD80 in B lymphocytes and dendritic cells, and downregulated expression of Tnfa and Il1b in splenocytes. In conclusion, these data demonstrate that the O-PS from the serotype b of A. actinomycetemcomitans plays a key role in the capacity of the bacterium to prime oral innate and adaptive immune responses, by triggering the Th1 and Th17-driven tooth-supporting bone resorption during periodontitis.
Collapse
Affiliation(s)
- Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jessica Astorga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Oral Microbiology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Claudia Terraza-Aguirre
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Institute for Regenerative Medicine and Biotherapies (IRMB), Université de Montpellier, Montpellier, France
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Molez AM, Nascimento EHL, Haiter Neto F, Cirano FR, Pimentel SP, Ribeiro FV, Casati MZ, Corrêa MG. Effect of resveratrol on the progression of experimental periodontitis in an ovariectomized rat model of osteoporosis: Morphometric, immune‐enzymatic, and gene expression analysis. J Periodontal Res 2020; 55:840-849. [DOI: 10.1111/jre.12775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022]
Affiliation(s)
| | - Eduarda Helena Leandro Nascimento
- Department of Oral Diagnosis Division of Oral Radiology Piracicaba Dental School University of Campinas Piracicaba, São Paulo Brazil
| | - Francisco Haiter Neto
- Department of Oral Diagnosis Division of Oral Radiology Piracicaba Dental School University of Campinas Piracicaba, São Paulo Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Cavalla F, Letra A, Silva RM, Garlet GP. Determinants of Periodontal/Periapical Lesion Stability and Progression. J Dent Res 2020; 100:29-36. [PMID: 32866421 DOI: 10.1177/0022034520952341] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal and periapical lesions are infectious inflammatory osteolitytic conditions in which a complex inflammatory immune response mediates bone destruction. However, the uncertainty of a lesion's progressive or stable phenotype complicates understanding of the cellular and molecular mechanisms triggering lesion activity. Evidence from clinical and preclinical studies of both periodontal and periapical lesions points to a high receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio as the primary determinant of osteolytic activity, while a low RANKL/OPG ratio is often observed in inactive lesions. Proinflammatory cytokines directly modulate RANKL/OPG expression and consequently drive lesion progression, along with pro-osteoclastogenic support provided by Th1, Th17, and B cells. Conversely, the cooperative action between Th2 and Tregs subsets creates an anti-inflammatory and proreparative milieu associated with lesion stability. Interestingly, the trigger for lesion status switch from active to inactive can originate from an unanticipated RANKL immunoregulatory feedback, involving the induction of Tregs and a host response outcome with immunological tolerance features. In this context, dendritic cells (DCs) appear as potential determinants of host response switch, since RANKL imprint a tolerogenic phenotype in DCs, described to be involved in both Tregs and immunological tolerance generation. The tolerance state systemically and locally suppresses the development of exacerbated and pathogenic responses and contributes to lesions stability. However, immunological tolerance break by comorbidities or dysbiosis could explain lesions relapse toward activity. Therefore, this article will provide a critical review of the current knowledge concerning periodontal and periapical lesions activity and the underlying molecular mechanisms associated with the host response. Further studies are required to unravel the role of immunological responsiveness or tolerance in the determination of lesion status, as well as the potential cooperative and/or inhibitory interplay among effector cells and their impact on RANKL/OPG balance and lesion outcome.
Collapse
Affiliation(s)
- F Cavalla
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - A Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - R M Silva
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry, Houston, TX, USA.,Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,Department of Endodontics, University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, SP, Brazil
| |
Collapse
|
16
|
de Alencar JB, Zacarias JMV, Tsuneto PY, de Souza VH, Silva CDOE, Visentainer JEL, Sell AM. Influence of inflammasome NLRP3, and IL1B and IL2 gene polymorphisms in periodontitis susceptibility. PLoS One 2020; 15:e0227905. [PMID: 31978095 PMCID: PMC6980600 DOI: 10.1371/journal.pone.0227905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of periodontitis (PD) involves several molecules of the immune system that interact in a network to eliminate the periodontopathogens, yet, they contribute to periodontal tissue destruction. The different mechanisms that lead to periodontal tissue damage are not clear. Despite this, immune response genes have been related to the development of PD previously, such as those involved in inflammasomes which are multiprotein complexes and cytokines including Interleukin-1. The aim of the study was to evaluate the polymorphisms in NLRP3 inflammasome, cytokine and receptor of cytokines genes in the development of periodontitis. This case-control study was conducted in 186 patients with PD (stage II and III and grade B) and 208 controls (localized gingivitis and periodontally healthy individuals). Genotyping was performed using PCR-RFLP for the SNP rs4612666 in NLRP3 and using PCR-SSP for IL1A, IL1B, IL1R, IL1RN, IL4RA, INFG, TGFB1, TNF, IL2, IL4, IL6, and IL10. Cytokine serum levels were measured using Luminex technology. SNPStats and OpenEpi software were used to perform statistical analysis. The higher frequencies of NLRP3 T/C and IL1B -511 T/T genotypes and IL2 (+166, -330) GT haplotype were observed in patients with PD compared to controls. The SNPs in NLRP3, IL1R +1970, IL6–174, TNF -308, IL2 +166 and -330, TGFB1 +869 and +915, IL4RA +1902, IL4–1098 and -590 were associated to PD in men. In conclusion, polymorphisms in NLRP3, IL1B and IL2 genes were associated to PD susceptibility. Men carrying the NLRP3, IL1R, IL6, TNF, IL2, TGFB1, IL4RA and IL4 polymorphisms had greater susceptibility than women for developing PD.
Collapse
Affiliation(s)
- Josiane Bazzo de Alencar
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail:
| | - Joana Maira Valentini Zacarias
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Patrícia Yumeko Tsuneto
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | - Victor Hugo de Souza
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Jeane Eliete Laguila Visentainer
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Maria Sell
- Department of Clinical Analysis and Biomedicine, Post-Graduation Program in Biosciences and Physiophatology, State University of Maringá, Maringá, Paraná, Brazil
- Department of Basic Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
17
|
Rojas L, Melgar-Rodríguez S, Díaz-Zúñiga J, Alvarez C, Monasterio G, Rojas C, Cafferata EA, Hernández M, Cortéz C, Carvajal P, Vernal R. Inhibitory effect of serotype a of Aggregatibacter actinomycetemcomitans on the increased destructive potential of serotype b. Oral Dis 2019; 26:409-418. [PMID: 31738464 DOI: 10.1111/odi.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/03/2019] [Accepted: 11/10/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The serotype b of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) induces higher cytokine production in dendritic cells (DCs) compared with the other serotypes. However, this increased immunostimulatory potential was modified when DCs were co-infected with the other A. actinomycetemcomitans serotypes. This study aimed to analyze whether the production of interferon gamma (IFN-γ), C-reactive protein (CRP), matrix metalloproteinase (MMP)-2, and MMP-9, as well as the activity of osteoclasts, also varies when DCs are co-infected with the A. actinomycetemcomitans serotypes. MATERIALS AND METHODS Human DCs were stimulated with the A. actinomycetemcomitans serotypes using the following stimulatory conditions: serotype a/b/c/a+b/a+c/b+c/a+b+c. The IFN-γ, CRP, and MMP-2 levels were quantified by ELISA. The active form of MMP-9 was quantified using fluorescent functional assays. The MMP-2 gelatinolytic activity was identified by zymogram. The osteoclast activity was determined by quantifying the TRAP expression and resorption-pit formation using cytochemistry and osteoassays. RESULTS Higher levels of IFN-γ, CRP, MMP-2, MMP-9, and osteoclast activity were detected when DCs were stimulated with the serotype b of A. actinomycetemcomitans compared with the others. This increased immunostimulatory potential attributed to serotype b diminished when DCs were co-infected with the serotype a. CONCLUSIONS This study provides new insights into the virulence of A. actinomycetemcomitans and reveals important differences in the immunostimulatory and pro-destructive potential among its serotypes.
Collapse
Affiliation(s)
- Leticia Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristian Cortéz
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
18
|
Th1/Th2/Th17/Treg Balance in Apical Periodontitis of Normoglycemic and Diabetic Rats. J Endod 2019; 45:1009-1015. [DOI: 10.1016/j.joen.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
|
19
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
20
|
Bi CS, Sun LJ, Qu HL, Chen F, Tian BM, Chen FM. The relationship between T-helper cell polarization and the RANKL/OPG ratio in gingival tissues from chronic periodontitis patients. Clin Exp Dent Res 2019; 5:377-388. [PMID: 31944625 PMCID: PMC7938418 DOI: 10.1002/cre2.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the relationship between inflammation‐related T‐helper cell polarization and the receptor activator for nuclear factor‐κB ligand (RANKL)/osteoprotegerin (OPG) ratio, which is associated with bone resorption or remodeling of chronic periodontitis patients. Gingival crevicular fluid (GCF) and gingival tissues were obtained from periodontally healthy individuals (PH group) and chronic periodontitis patients (CP group). The GCF levels of IFN‐γ, IL‐4, IL‐17, and IL‐10 linked to T‐helper cell polarization toward the Th1, Th2, Th17, and Treg phenotypes, respectively, were determined by ELISA. The expression levels of these cytokines and the polarized T‐helper cells in gingival tissues were assessed through immunohistochemical and immunofluorescence assays. In addition, the RANKL and OPG expression levels in gingival tissues were detected by immunohistochemical assays, and linear regression analysis was used to identify the potential relationship between T‐helper cell polarization and the RANKL/OPG ratio. In total, 22 individuals and 35 patients were enrolled in the present study. In both GCF and gingival tissues, increased levels of IL‐17 and the decreased levels of IL‐4 and IL‐10 were observed in the CP group. When polarized T‐helper cells were identified in gingival tissues, more Th1 and Th17 cells were found in the CP group, whereas more Th2 and Treg cells were found in the PH group. Although there was no significant difference in OPG expression between the two groups, the RANKL/OPG ratio in the CP group was higher than that in the PH group. The linear regression analysis showed that the presence of more Th1 and Th17 cells correlated with a higher RANKL/OPG ratio, whereas the presence of more Th2 cells correlated with a lower RANKL/OPG ratio. Th1 and Th17 cells are positively correlated and Th2 cells are negatively correlated with the RANKL/OPG ratio. Our data suggest that T‐helper cell polarization is closely linked to the RANKL/OPG ratio in gingival tissues from chronic periodontitis patients.
Collapse
Affiliation(s)
- Chun-Sheng Bi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Li-Juan Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fang Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Colavite PM, Vieira AE, Palanch Repeke CE, de Araujo Linhari RP, De Andrade RGCS, Borrego A, De Franco M, Trombone APF, Garlet GP. Alveolar bone healing in mice genetically selected in the maximum (AIRmax) or minimum (AIRmin) inflammatory reaction. Cytokine 2018; 114:47-60. [PMID: 30584949 DOI: 10.1016/j.cyto.2018.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023]
Abstract
The exact role of inflammatory immune response in bone healing process is still unclear, but the success of the alveolar bone healing process seems to be associated with a moderate and transitory inflammatory response, while insufficient or exacerbated responses seems to have a detrimental influence in the healing outcome. In this context, we performed a comparative analysis of mice strains genetically selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response to address the influence of inflammation genes in alveolar bone healing outcome. Experimental groups comprised 8-week-old male or female AIRmax and AIRmin submitted to extraction of upper right incisor, and evaluated at 0, 3, 7, 14 and 21 days after upper incision extraction by micro-computed tomography (μCT), histomorphometry, birefringence, immunohistochemistry and molecular (PCRArray) analysis. Overall, the results demonstrate a similar successful bone healing outcome at the endpoint was evidenced in both AIRmin and AIRmax strains. The histormophometric analysis reveal a slight but significant decrease in blood clot and inflammatory cells density, as well a delay in the bone formation in AIRmax strain in the early times, associated with a decreased expression of BMP2, BMP4, BMP7, TGFb1, RUNX2, and ALP. The evaluation of inflammatory cells nature reveals increased GR1+ cells counts in AIRmax strain at 3d, associated with increased levels of neutrophil chemoattractants such as CXCL1 and CXCL2, and its receptor CXCR1, while F4/80+ cell prevails in AIRmin strain at 7d. Also, our results demonstrate a relative predominance of M2 macrophages in AIRmin strain, associated with an increased expression of ARG1, IL10, TGFb, while M1 macrophages prevail in AIRmax, which parallel with increased IL-1B, IL-6 and TNF expression. At late repair stage, AIRmax presents evidences of increased bone remodeling, characterized by increased density of blood vessels and osteoclasts in parallel with decreased bone matrix density, as well increased levels of MMPs, osteoclastogenic and osteocyte markers. In the view of contrasting inflammatory and healing phenotypes of AIRmin and AIRmax strains in other models, the unpredicted phenotype observed suggests the existence of specific QTLs (Quantitative trait loci) responsible for the regulation 'sterile' inflammation and bone healing events. Despite the similar endpoint healing, AIRmax strain delayed repair was associated with increased presence of neutrophils and M1 macrophages, supporting the association of M2 cells with faster bone healing. Further studies are required to clarify the elements responsible for the regulation of inflammatory events at bone healing sites, as well the determinants of bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Andreia Espindola Vieira
- Histology and Embryology Laboratory, Institute of Biological and Health Sciences (ICBS), Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | | | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | - Marcelo De Franco
- Diagnostic Section, Pasteur Institute, Secretary of Health, Government of the State of São Paulo, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
22
|
Colavite PM, Cavalla F, Garlet TP, Azevedo MDCS, Melchiades JL, Campanelli AP, Letra A, Trombone APF, Silva RM, Garlet GP. TBX21-1993T/C polymorphism association with Th1 and Th17 response at periapex and with periapical lesions development risk. J Leukoc Biol 2018; 105:609-619. [PMID: 30548981 DOI: 10.1002/jlb.6a0918-339r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/23/2022] Open
Abstract
TBX21-1993T/C (rs4794067) polymorphism increases the transcriptional activity of the Tbx21, essential for interferon gamma (IFNg) transcription, but its functional impact on development Th1- response in vivo remains unclear, as well its potential influence over inflammatory osteolytic conditions, such as periapical lesions. Therefore, this study comprises a case-control and functional investigation of Tbx21 genetic variations impact on Th1 response in vivo and in vitro, and its impact on periapical lesions risk and outcome, performed with a population of healthy controls (H; N = 283) and patients presenting periapical lesions (L; N = 188) or deep caries (DC; N = 152). TBX21-1993T/C genotyping demonstrated that the polymorphic allele C, as well TC/TC+CC genotypes, was significantly less frequent in the L patients compared to H and DC groups. Additionally, gene expression analysis demonstrates that T-cell-specific T-box transcription factor (Tbet) and IFNg transcripts levels were downregulated whereas IL-17 levels were upregulated in the TBX21-1993 C carriers (TC/TC+CC) in comparison with the TT group. Also, while TT and TC+CC genotypes are equally prevalent in the lesions presenting low IFN/IL17 ratio, a significant decrease in polymorphic TC+CC genotypes was observed in lesions presenting intermediate and high IFN/IL17 ratio. In vitro experiments confirmed the predisposition to Th1 polarization associated with TBX21-1993, since PBMC CD4 T cells from T allele carriers produce higher IFNg levels upon CD3/CD28 stimulation than the C group, in both standard/neutral and Th1-polarizing culture conditions. In conclusion, the TBX21-1993 T allele and TC/CC genotypes predispose to Th1-type immune response development in vitro, influence immune response polarization in vivo, and consequently account for the risk for apical periodontitis development.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, Brazil.,Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Thiago Pompermaier Garlet
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Jessica Lima Melchiades
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, Brazil
| | - Ariadne Letra
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Diagnostic and Biomedical Sciences, and Center for Craniofacial Research, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Renato Menezes Silva
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
23
|
Sommer MEL, Dalia RA, Nogueira AVB, Cirelli JA, Vinolo MAR, Fachi JL, Oliveira CA, Andrade TAM, Mendonça FAS, Santamaria M, Felonato M. Immune response mediated by Th1 / IL-17 / caspase-9 promotes evolution of periodontal disease. Arch Oral Biol 2018; 97:77-84. [PMID: 30366216 DOI: 10.1016/j.archoralbio.2018.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Periodontitis is characterized by inflammatory mediators beyond T lymphocyte function and phenotype (Th1/Th2/Th17). The clinical diversity in periodontitis makes it difficult to characterize the immune response in patients. This study evaluated the profile of the adaptive immune response in the periodontal disease model. METHODS 72 rats (Wistar) were divided into a control group (CTL/day 0) and periodontitis (PD15/15 days and PD60/60 days). In the PD15 and PD60 groups, periodontal disease was induced by ligature with a silk thread placed in the cervical region of the upper first molar. After euthanasia, the periodontal tissue was analyzed by flow cytometry (CD4, CD8, CD25, CD44), semi-quantitative RT-PCR (T-bet, GATA-3, RORγt), semi-quantitative RT-PCR and ELISA IFN-γ, TNF-α, IFN-γ, IL-4, IL-6, IL-10, IL-17) and by Western blotting (Caspase-9, PCNA). RESULTS The number of CD4+CD25+, CD4+CD44+, CD8+CD25+ and CD8+CD44+ cells and expression levels of T-bet and GATA-3 are increased in the PD60 group compared to PD15 and CTL. The RORγ-t gene transcript increased in the PD15 group in relation to PD60 and CTL. The cytokines IFN-γ, TNF-α and IL-17 increased in the PD60 group in relation to PD15. The expression of Caspase-9 was higher in the PD60 group than in PD15. CONCLUSIONS The results suggest that the evolution of gingivitis to periodontitis is related to the accumulation of activated Th1 cells (IFN-γ and TNF-α) associated with the presence of increased IL-17. Studies with inhibitors of these cytokines in periodontal disease may lead to therapy directed at blocking the inflammatory process in this pathology, interrupting bone loss.
Collapse
Affiliation(s)
- M E L Sommer
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - R A Dalia
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - A V B Nogueira
- Dental School, Department of Diagnosis and Surgery, São Paulo State University, Araraquara, São Paulo, Brazil
| | - J A Cirelli
- Dental School, Department of Diagnosis and Surgery, São Paulo State University, Araraquara, São Paulo, Brazil
| | - M A R Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - J L Fachi
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - C A Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - T A M Andrade
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - F A S Mendonça
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - M Santamaria
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil; Graduate Program in Odontology, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil
| | - M Felonato
- Graduate Program in Biomedical Sciences, Centro Universitario Hermınio Ometto (UNIARARAS), Brazil.
| |
Collapse
|
24
|
Kindstedt E, Koskinen Holm C, Palmqvist P, Sjöström M, Lejon K, Lundberg P. Innate lymphoid cells are present in gingivitis and periodontitis. J Periodontol 2018; 90:200-207. [PMID: 30070705 DOI: 10.1002/jper.17-0750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Innate lymphoid cells (ILCs) are the most recently identified leukocytes of the immune system and these cells are increasingly acknowledged to play important roles in host defence and tissue repair. ILCs are also contributors of inflammatory diseases such as asthma and colitis. We analyzed the presence and relative proportions of the different ILC subsets (ILC1, ILC2 and ILC3) in gingivitis and periodontitis. Further, we investigated if ILCs express receptor activator of nuclear factor kappa-B ligand (RANKL), a cytokine crucial for osteoclast differentiation and bone resorption. METHODS We collected gingivitis and periodontitis soft tissue and characterized ILC subsets including RANKL expression in single-cell suspensions using flow cytometry. RESULTS ILCs were detected both in gingivitis and periodontitis. The majority of ILCs, in both conditions, were ILC1s. Furthermore, RANKL expression was detected on a fraction of the ILC1s. CONCLUSIONS Our discovery of the presence of ILCs both in gingivitis and periodontitis and concomitant expression of RANKL on a fraction of the ILC1 population suggest that these cells may be of importance in periodontal disease. In addition, our findings provide a new insight into the field of oral immunology.
Collapse
Affiliation(s)
- Elin Kindstedt
- Department of Odontology, Division of Molecular Periodontology, Umeå University, SE-901 85 Umeå, Sweden
| | - Cecilia Koskinen Holm
- Department of Odontology, Division of Molecular Periodontology, Umeå University, SE-901 85 Umeå, Sweden
| | - Py Palmqvist
- Department of Odontology, Division of Molecular Periodontology, Umeå University, SE-901 85 Umeå, Sweden
| | - Mats Sjöström
- Department of Odontology, Division of Oral and Maxillofacial Surgery, Umeå University, SE-901 85 Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology, Division of Immunology, Umeå University, SE-901 85 Umeå, Sweden
| | - Pernilla Lundberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
25
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa‐Ard‐Iam N, Yongyuth A, Isaraphithakkul B, Rerkyen P, Charatkulangkun O, Pichyangkul S. Memory T cell subsets in healthy gingiva and periodontitis tissues. J Periodontol 2018; 89:1121-1130. [DOI: 10.1002/jper.17-0674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rangsini Mahanonda
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Keskanya Subbalekha
- Department of Oral Maxillofacial SurgeryFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Noppadol Sa‐Ard‐Iam
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Arsarn Yongyuth
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Pimprapa Rerkyen
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Orawan Charatkulangkun
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Sathit Pichyangkul
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| |
Collapse
|
26
|
Evaluation of tissue levels of Toll-like receptors and cytokine mRNAs associated with bovine periodontitis and oral health. Res Vet Sci 2018; 118:439-443. [DOI: 10.1016/j.rvsc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
27
|
Genetic Association with Subgingival Bacterial Colonization in Chronic Periodontitis. Genes (Basel) 2018; 9:genes9060271. [PMID: 29882907 PMCID: PMC6027454 DOI: 10.3390/genes9060271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic periodontitis is the most prevalent form of inflammatory destructive bone disease and has been affecting humans since antiquity. Evidence suggest that genetic factors can highly influence periodontitis risk, modulating disease elements such as the susceptibility to microbial colonization and the nature of subsequent host-microbe interaction. Several single-nucleotide polymorphisms (SNPs) have been associated with the occurrence of periodontitis, but the full range of genetic influence in periodontitis outcomes remains to be determined. In this context, this study comprises an analysis of possible correlation between periodontitis-related genetic variants with changes in the subgingival microbiological pattern performed in a Brazilian population (n = 167, comprising 76 chronic periodontitis patients and 91 healthy subjects). For the genetic characterization, 19 candidate SNPs were selected based on the top hits of previous large genome wide association studies (GWAS), while the subgingival microbiota was characterized for the presence and relative quantity of 40 bacterial species by DNA-DNA checkerboard. The case/control association test did not demonstrate a significant effect of the target SNPs with the disease phenotype. The polymorphism rs2521634 proved significantly associated with Tannerella forsythia, Actinomyces gerencseriae, Fusobacterium periodonticum, and Prevotella nigrescens; rs10010758 and rs6667202 were associated with increased counts of Porphyromonas gingivalis; and rs10043775 proved significantly associated with decreased counts of Prevotella intermedia. In conclusion, we present strong evidence supporting a direct connection between the host’s genetic profile, specifically rs2521634, rs10010758, rs6667202, and rs10043775 polymorphisms, and the occurrence of chronic periodontitis-associated bacteria.
Collapse
|
28
|
Wang Z, Tan J, Lei L, Sun W, Wu Y, Ding P, Chen L. The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the calcification of primary osteoblasts in vitro. Int Immunopharmacol 2018; 57:1-10. [PMID: 29438885 DOI: 10.1016/j.intimp.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Interleukin-17 (IL-17) and interferon-gamma (IFN-γ) are all pro-inflammatory cytokines produced by specific subsets of T-cells and are also considered crucial regulators in bone remodeling, but their effects on osteogenesis have not been carefully studied. So, this study aimed to investigate the effects of secreting cytokines IL-17 and IFN-γ on the osteogenesis of primary osteoblasts and to clarify the potential roles of the related Janus activated kinase 2 (JAK2) and downstream signal transducer and activator of transcription 3 (STAT3) signaling pathway in bone remodeling. METHODS The proliferation of osteoblasts was evaluated by MTT assay. Osteogenic activity was tested by alkaline phosphatase (ALP) activity assay and alizarin red staining. The mRNA levels of ALP, osteocalcin, osteoprotegerin (OPG), Runt-related transcription factor 2 (Runx2) and receptor activator of nuclear factor-kappa B ligand (RANKL) were also measured by real-time quantitative PCR. The JAK2-STAT3 pathway was evaluated by Western blot. RESULTS Osteoblasts showed no obvious proliferation when treated with IL-17 and/or IFN-γ, but higher ALP activities were observed in primary osteoblasts treated with IL-17 or IL-17 + IFN-γ in induction medium. We also found that IL-17 could promote the gene expression of Alp, Runx2, Osteocalcin, Opg, and Rankl, while IFN-γ might attenuate this effect. Nevertheless, IL-17 and IFN-γ exhibited an inhibitory effect on the calcification of primary osteoblasts. We also found that IL-17 could directly facilitate RANKL expressions by JAK2-STAT3 pathway. CONCLUSION The positive effects of IL-17 and IFN-γ on the early-stage differentiation and the negative effects on the calcification of murine calvarial osteoblasts contribute to our understanding of the role and interaction of inflammatory factors in the bone remodeling and as fundamental mechanisms involved in the destruction of alveolar bone.
Collapse
Affiliation(s)
- Zhongxiu Wang
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tan
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Lei
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmin Wu
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peihui Ding
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Oral Medicine, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Corrêa MG, Sacchetti SB, Ribeiro FV, Pimentel SP, Casarin RCV, Cirano FR, Casati MZ. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS One 2017; 12:e0174442. [PMID: 28358812 PMCID: PMC5373534 DOI: 10.1371/journal.pone.0174442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
This study investigated some immunological features by experimental periodontitis (EP) and rheumatoid arthritis (RA) disease interact in destructive processes in arthritic rats. Rats were assigned to the following groups: EP +RA; RA; EP; and Negative Control. RA was induced by immunizations with type-II collagen and a local immunization with Complete Freund's adjuvant in the paw. Periodontitis was induced by ligating the right first molars. The serum level of rheumatoid factor (RF) and anti-citrullinated protein antibody (ACCPA) were measured before the induction of EP (T1) and at 28 days after (T2) by ELISA assay. ACCPA levels were also measured in the gingival tissue at T2. The specimens were processed for morphometric analysis of bone loss, and the gingival tissue surrounding the first molar was collected for the quantification of interleukin IL-1β, IL-4, IL-6, IL-17 and TNF-α using a Luminex/MAGpix assay. Paw edema was analyzed using a plethysmometer. Periodontitis increased the RF and ACCPA levels in the serum and in the gingival tissue, respectively. Besides, the level of paw swelling was increased by EP and remained in progress until the end of the experiment, when EP was associated with RA. Greater values of IL-17 were observed only when RA was present, in spite of PE. It can be concluded that periodontitis increases rheumatic factor serum levels and citrullinated proteins level in gingival tissues and alter cytokine balance in arthritic rats; at the same time, arthritis increases periodontal destruction, confirming the bidirectional interaction between diseases.
Collapse
Affiliation(s)
- Mônica G. Corrêa
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Silvana B. Sacchetti
- Pediatric Rheumatology Unit, Pediatric Rheumatology Unit, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | | | - Fabiano Ribeiro Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Marcio Z. Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
30
|
NADPH Oxidase Contributes to Resistance against Aggregatibacter actinomycetemcomitans-Induced Periodontitis in Mice. Infect Immun 2017; 85:IAI.00849-16. [PMID: 27849181 DOI: 10.1128/iai.00849-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91phox KO mice. Only infected gp91phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis.
Collapse
|
31
|
Kumar NK, Reddy VKK, Padakandla P, Togaru H, Kalagatla S, Reddy VCM. Evaluation of chemokines in gingival crevicular fluid in children with band and loop space maintainers: A clinico-biochemical study. Contemp Clin Dent 2016; 7:302-6. [PMID: 27630491 PMCID: PMC5004540 DOI: 10.4103/0976-237x.188542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Chemokines are pro-inflammatory cells that can be induced during an immune response to recruit cells of the immune system to a site of infection. Aim: This study was conducted to detect the presence of chemokines, macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) and estimate their levels in gingival crevicular fluid (GCF) in children with band and loop space maintainers. Materials and Methods: MIP-1α and MIP-1β levels were estimated in GCF samples from twenty healthy children and twenty children with band and loop space maintainers. Periodontal status was evaluated by measuring gingival index, plaque index, and Russell's periodontal index. The GCF samples were quantified by ELISA, and the levels of MIP-1α and MIP-1β were determined. Results: The mean MIP-1α concentrations in healthy children and those with space maintainers were 395.75 pg/µl and 857.85 pg/µl, respectively, and MIP-1β was 342.55 pg/µl and 685.25 pg/µl, respectively. MIP-1α and MIP-1β levels in GCF from children with space maintainers were significantly higher than in the healthy group, and statistically significant difference existed between these two groups. Conclusion: MIP-1α and MIP-1β can be considered as novel biomarkers in the biological mechanism underlying the pathogenesis of gingival inflammation in children with space maintainers.
Collapse
Affiliation(s)
- Naveen Kommineni Kumar
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Veera Kishore Kasa Reddy
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Prathyusha Padakandla
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Harshini Togaru
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Swathi Kalagatla
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| | - Vinay Chand M Reddy
- Department of Pedodontics, C.K.S. Teja Institute of Dental Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
32
|
Cheng WC, van Asten SD, Burns LA, Evans HG, Walter GJ, Hashim A, Hughes FJ, Taams LS. Periodontitis-associated pathogens P. gingivalis and A. actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol 2016; 46:2211-21. [PMID: 27334899 PMCID: PMC5031191 DOI: 10.1002/eji.201545871] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
The Th17/IL‐17 pathway is implicated in the pathogenesis of periodontitis (PD), however the mechanisms are not fully understood. We investigated the mechanism by which the periodontal pathogens Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) promote a Th17/IL‐17 response in vitro, and studied IL‐17+ CD4+ T‐cell frequencies in gingival tissue and peripheral blood from patients with PD versus periodontally healthy controls. Addition of Pg or Aa to monocyte/CD4+ T‐cell co‐cultures promoted a Th17/IL‐17 response in vitro in a dose‐ and time‐dependent manner. Pg or Aa stimulation of monocytes resulted in increased CD40, CD54 and HLA‐DR expression, and enhanced TNF‐α, IL‐1β, IL‐6 and IL‐23 production. Mechanistically, IL‐17 production in Pg‐stimulated co‐cultures was partially dependent on IL‐1β, IL‐23 and TLR2/TLR4 signalling. Increased frequencies of IL‐17+ cells were observed in gingival tissue from patients with PD compared to healthy subjects. No differences were observed in IL‐17+ CD4+ T‐cell frequencies in peripheral blood. In vitro, Pg induced significantly higher IL‐17 production in anti‐CD3 mAb‐stimulated monocyte/CD4+ T‐cell co‐cultures from patients with PD compared to healthy controls. Our data suggest that periodontal pathogens can activate monocytes, resulting in increased IL‐17 production by human CD4+ T cells, a process that appears enhanced in patients with PD.
Collapse
Affiliation(s)
- Wan-Chien Cheng
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.,Department of Periodontology, Dental Institute, King's College London, London, UK.,Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Saskia D van Asten
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Lachrissa A Burns
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Hayley G Evans
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Gina J Walter
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Ahmed Hashim
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Department of Periodontology, Dental Institute, King's College London, London, UK
| | - Leonie S Taams
- Division of Immunology, Infection & Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK.
| |
Collapse
|
33
|
Corrêa MG, Pires PR, Ribeiro FV, Pimentel SZ, Casarin RCV, Cirano FR, Tenenbaum HT, Casati MZ. Systemic treatment with resveratrol and/or curcumin reduces the progression of experimental periodontitis in rats. J Periodontal Res 2016; 52:201-209. [DOI: 10.1111/jre.12382] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- M. G. Corrêa
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - P. R. Pires
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - F. V. Ribeiro
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - S. Z. Pimentel
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - R. C. V. Casarin
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - F. R. Cirano
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| | - H. T. Tenenbaum
- Department of Periodontology; Faculty of Dentistry; University of Toronto; Toronto ON Canada
- Laboratory Medicine and Pathobiology; Faculty of Medicine; University of Toronto; Toronto ON Canada
- Department of Periodontics; School of Dental Medicine; Tel Aviv University; Tel Aviv Israel
| | - M. Z. Casati
- Dental Research Division; School of Dentistry; Paulista University; São Paulo São Paulo Brazil
| |
Collapse
|
34
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
35
|
Allin N, Cruz-Almeida Y, Velsko I, Vovk A, Hovemcamp N, Harrison P, Huang H, Aukhil I, Wallet SM, Shaddox LM. Inflammatory Response Influences Treatment of Localized Aggressive Periodontitis. J Dent Res 2016; 95:635-41. [PMID: 26917438 DOI: 10.1177/0022034516631973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously reported a systemic hyperinflammatory response to bacterial lipopolysaccharide (LPS) in children with localized aggressive periodontitis (LAP). Additionally, different levels of this response were observed within the LAP group. It is unknown whether this hyperinflammatory response influences the clinical response to periodontal treatment in these children. Therefore, the goal of this study was to evaluate the influence of LPS responsiveness present prior to treatment on the clinical response to treatment within the LAP cohort. Prior to treatment, peripheral blood was collected from 60 African American participants aged 5 to 21 y, free of systemic diseases, and diagnosed with LAP. Blood was stimulated with ultrapure LPS from Escherichia coli, and Luminex assays were performed to quantify 14 cytokine/chemokine levels. Principal component and cluster analyses were used to find patterns of cytokine/chemokine expression among participants and subdivide them into clusters. Three distinct clusters emerged among LAP participants: a high responder group (high level of response for INFg, IL6, and IL12p40), a mixed responder group (low for some and high for other cytokines/chemokines), and a low responder group (low overall cytokine/chemokine response). Periodontal clinical parameters were compared among these groups prior to and 3, 6, and 12 mo following treatment with mechanical debridement and systemic antibiotics. High responders presented the lowest reductions in clinical parameters after treatment, whereas the low responders presented the highest reductions. In our LAP participants, distinct patterns of LPS response were significantly predictive of changes in clinical parameters after treatment. Future studies are needed to evaluate the underlying mechanisms predicting the heterogeneity of LAP activity, severity, and response to treatment (ClinicalTrials.gov NCT01330719).
Collapse
Affiliation(s)
- N Allin
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Y Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - I Velsko
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - A Vovk
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - N Hovemcamp
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - P Harrison
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - H Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - I Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - S M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - L M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, USA Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
36
|
Cavalla F, Biguetti CC, Colavite PM, Silveira EV, Martins W, Letra A, Trombone APF, Silva RM, Garlet GP. TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection. Virulence 2016; 6:293-304. [PMID: 25832120 DOI: 10.1080/21505594.2015.1029828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis.
Collapse
Affiliation(s)
- Franco Cavalla
- a Departamento de Ciencias Biológicas; Faculdade de Odontologia de Bauru Universidade de São Paulo (FOB/USP) ; Bauru , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Campbell L, Millhouse E, Malcolm J, Culshaw S. T cells, teeth and tissue destruction - what do T cells do in periodontal disease? Mol Oral Microbiol 2015; 31:445-456. [DOI: 10.1111/omi.12144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/12/2023]
Affiliation(s)
- L. Campbell
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - E. Millhouse
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - J. Malcolm
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - S. Culshaw
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
38
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
39
|
Queiroz-Junior CM, Silveira KD, de Oliveira CR, Moura AP, Madeira MFM, Soriani FM, Ferreira AJ, Fukada SY, Teixeira MM, Souza DG, da Silva TA. Protective effects of the angiotensin type 1 receptor antagonist losartan in infection-induced and arthritis-associated alveolar bone loss. J Periodontal Res 2015; 50:814-23. [PMID: 25753377 DOI: 10.1111/jre.12269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE The angiotensin type 1 (AT1) receptor has been implicated in the pathogenesis of inflammatory bone disorders. This study aimed to investigate the effect of an AT1 receptor antagonist in infection-induced and arthritis-associated alveolar bone loss in mice. MATERIAL AND METHODS Mice were subjected to Aggregatibacter actinomycetemcomitans oral infection or antigen-induced arthritis and treated daily with 10 mg/kg of the prototype AT1 antagonist, losartan. Treatment was conducted for 30 d in the infectious condition and for 17 d and 11 d in the preventive or therapeutic regimens in the arthritic model, respectively. The mice were then killed, and the maxillae, serum and knee joints were collected for histomorphometric and immunoenzymatic assays. In vitro osteoclast assays were performed using RAW 264.7 cells stimulated with A. actinomycetemcomitans lipopolysacharide (LPS). RESULTS Arthritis and A. actinomycetemcomitans infection triggered significant alveolar bone loss in mice and increased the levels of myeloperoxidase and of TRAP(+) osteoclasts in periodontal tissues. Losartan abolished such a phenotype, as well as the arthritis joint inflammation. Both arthritis and A. actinomycetemcomitans conditions were associated with the release of tumor necrosis factor alpha (TNF-α), interferon-gamma, interleukin-17 and chemokine (C-X-C motif) ligand 1 and an increased RANKL/osteoprotegerin ratio in periodontal tissues, but such expression decreased after losartan treatment, except for TNF-α. The therapeutic approach was as beneficial as the preventive one. In vitro, losartan prevented LPS-induced osteoclast differentiation and activity. CONCLUSION The blockade of AT1 receptor exerts anti-inflammatory and anti-osteoclastic effects, thus protecting periodontal tissues in distinct pathophysiological conditions of alveolar bone loss.
Collapse
Affiliation(s)
- C M Queiroz-Junior
- Department of Oral Surgery and Pathology, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.,Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - K D Silveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - C R de Oliveira
- Department of Oral Surgery and Pathology, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.,Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - A P Moura
- Department of Oral Surgery and Pathology, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - M F M Madeira
- Department of Oral Surgery and Pathology, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.,Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - F M Soriani
- Department of General Biology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - A J Ferreira
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - S Y Fukada
- Department of Physics and Chemistry*, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - M M Teixeira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - D G Souza
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - T A da Silva
- Department of Oral Surgery and Pathology, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
40
|
Araujo-Pires AC, Francisconi CF, Biguetti CC, Cavalla F, Aranha AMF, Letra A, Trombone APF, Faveri M, Silva RM, Garlet GP. Simultaneous analysis of T helper subsets (Th1, Th2, Th9, Th17, Th22, Tfh, Tr1 and Tregs) markers expression in periapical lesions reveals multiple cytokine clusters accountable for lesions activity and inactivity status. J Appl Oral Sci 2014; 22:336-46. [PMID: 25141207 PMCID: PMC4126831 DOI: 10.1590/1678-775720140140] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/20/2014] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Previous studies demonstrate that the balance between pro- and anti-inflammatory mediators determines the stable or progressive nature of periapical granulomas by modulating the balance of the osteoclastogenic factor RANKL and its antagonist OPG. However, the cytokine networks operating in the development of periapical lesions are quite more complex than what the simple pro- versus anti-inflammatory mediators' paradigm suggests. Here we simultaneously investigated the patterns of Th1, Th2, Th9, Th17, Th22, Thf, Tr1 and Tregs cytokines/markers expression in human periapical granulomas. METHODS The expression of TNF-α, IFN-γ, IL-17A, IL23, IL21, IL-33, IL-10, IL-4, IL-9, IL-22, FOXp3 markers (via RealTimePCR array) was accessed in active/progressive (N=40) versus inactive/stable (N=70) periapical granulomas (as determined by RANKL/OPG expression ratio), and also to compare these samples with a panel of control specimens (N=26). A cluster analysis of 13 cytokine levels was performed to examine possible clustering between the cytokines in a total of 110 granulomas. RESULTS The expression of all target cytokines was higher in the granulomas than in control samples. TNF-α, IFN-γ, IL-17A and IL-21 mRNA levels were significantly higher in active granulomas, while in inactive lesions the expression levels of IL-4, IL-9, IL-10, IL-22 and FOXp3 were higher than in active granulomas. Five clusters were identified in inactive lesion groups, being the variance in the expression levels of IL-17, IL-10, FOXp3, IFN-γ, IL-9, IL-33 and IL-4 statistically significant (KW p<0.05). Three clusters were identified in active lesions, being the variance in the expression levels of IL-22, IL-10, IFN-γ, IL-17, IL-33, FOXp3, IL-21 and RANKL statistically significant (KW p<0.05). CONCLUSION There is a clear dichotomy in the profile of cytokine expression in inactive and active periapical lesions. While the widespread cytokine expression seems to be a feature of chronic lesions, hierarchical cluster analysis demonstrates the association of TNF-α, IL-21, IL-17 and IFN-γ with lesions activity, and the association of FOXP3, IL-10, IL-9, IL-4 and IL-22 with lesions inactivity.
Collapse
Affiliation(s)
- Ana Claudia Araujo-Pires
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Andreza Maria Fabio Aranha
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ariadne Letra
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | | | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Renato Menezes Silva
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
41
|
Garlet GP, Sfeir CS, Little SR. Restoring host-microbe homeostasis via selective chemoattraction of Tregs. J Dent Res 2014; 93:834-9. [PMID: 25056995 PMCID: PMC4213252 DOI: 10.1177/0022034514544300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/12/2023] Open
Abstract
The disruption of host-microbe homeostasis at the site of periodontal disease is considered a key factor for disease initiation and progress. While the downstream mechanisms responsible for the tissue damage per se are relatively well-known (involving various patterns of immune response operating toward periodontal tissue destruction), we are only beginning to understand the complexity of host-microbe interactions in the periodontal environment. Unfortunately, most of the research has been focused on the disruption of host-microbe homeostasis instead of focusing on the factors responsible for maintaining homeostasis. In this context, regulatory T-cells (Tregs) comprise a CD4+FOXp3 +T-cell subset with a unique ability to regulate other leukocyte functions to avoid excessive immune activation and its pathological consequences. Tregs act as critical determinants of host-microbe homeostasis, as well as determinants of a balanced host response after the disruption of host-microbe homeostasis by pathogens. In periodontitis, Tregs play a protective role, with their natural recruitment being responsible for conversion of active into inactive lesions. With controlled-release technology, it is now possible to achieve a selective chemoattraction of Tregs to periodontal tissues, attenuating experimental periodontitis evolution due to the local control of inflammatory immune response and the generation of a pro-reparative environment.
Collapse
Affiliation(s)
- G P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University (FOB/USP), Bauru, SP, Brazil
| | - C S Sfeir
- Bioengineering The McGowan Institute for Regenerative Medicine Department of Oral Biology The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - S R Little
- Departments of Chemical Engineering Bioengineering Immunology The McGowan Institute for Regenerative Medicine The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Abdel-Haq A, Kusnierz-Cabala B, Darczuk D, Sobuta E, Dumnicka P, Wojas-Pelc A, Chomyszyn-Gajewska M. Interleukin-6 and neopterin levels in the serum and saliva of patients with Lichen Planus
and oral Lichen Planus. J Oral Pathol Med 2014. [DOI: 10.10.1111/jop.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ayman Abdel-Haq
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Beata Kusnierz-Cabala
- Department of Diagnostics; Chair of Clinical Biochemistry; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Dagmara Darczuk
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Eliza Sobuta
- Department of Diagnostics; University Hospital; Cracow Poland
| | - Paulina Dumnicka
- Department of Medical Diagnostics; Faculty of Pharmacy; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Anna Wojas-Pelc
- Department of Dermatology; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| |
Collapse
|
43
|
Abdel-Haq A, Kusnierz-Cabala B, Darczuk D, Sobuta E, Dumnicka P, Wojas-Pelc A, Chomyszyn-Gajewska M. Interleukin-6 and neopterin levels in the serum and saliva of patients with Lichen Planus
and oral Lichen Planus. J Oral Pathol Med 2014; 43:734-9. [DOI: 10.1111/jop.12199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Ayman Abdel-Haq
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Beata Kusnierz-Cabala
- Department of Diagnostics; Chair of Clinical Biochemistry; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Dagmara Darczuk
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Eliza Sobuta
- Department of Diagnostics; University Hospital; Cracow Poland
| | - Paulina Dumnicka
- Department of Medical Diagnostics; Faculty of Pharmacy; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Anna Wojas-Pelc
- Department of Dermatology; Jagiellonian University; Collegium Medicum; Cracow Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine; Jagiellonian University; Collegium Medicum; Cracow Poland
| |
Collapse
|
44
|
Cheng WC, Hughes FJ, Taams LS. The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol 2014; 41:541-9. [DOI: 10.1111/jcpe.12238] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Wan-Chien Cheng
- Department of Periodontology; School of Dentistry; King's College London; London UK
- Division of Immunology, Infection & Inflammatory Disease; Centre for Molecular and Cellular Biology of Inflammation; King's College London; London UK
| | - Francis J. Hughes
- Department of Periodontology; School of Dentistry; King's College London; London UK
| | - Leonie S. Taams
- Division of Immunology, Infection & Inflammatory Disease; Centre for Molecular and Cellular Biology of Inflammation; King's College London; London UK
| |
Collapse
|
45
|
|
46
|
Teles R, Teles F, Frias-Lopez J, Paster B, Haffajee A. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000 2014; 62:95-162. [PMID: 23574465 PMCID: PMC3912758 DOI: 10.1111/prd.12010] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Periodontal diseases are initiated by bacterial species living in polymicrobial biofilms at or below the gingival margin and progress largely as a result of the inflammation elicited by specific subgingival species. In the past few decades, efforts to understand the periodontal microbiota have led to an exponential increase in information about biofilms associated with periodontal health and disease. In fact, the oral microbiota is one of the best-characterized microbiomes that colonize the human body. Despite this increased knowledge, one has to ask if our fundamental concepts of the etiology and pathogenesis of periodontal diseases have really changed. In this article we will review how our comprehension of the structure and function of the subgingival microbiota has evolved over the years in search of lessons learned and unlearned in periodontal microbiology. More specifically, this review focuses on: (i) how the data obtained through molecular techniques have impacted our knowledge of the etiology of periodontal infections; (ii) the potential role of viruses in the etiopathogenesis of periodontal diseases; (iii) how concepts of microbial ecology have expanded our understanding of host-microbe interactions that might lead to periodontal diseases; (iv) the role of inflammation in the pathogenesis of periodontal diseases; and (v) the impact of these evolving concepts on therapeutic and preventive strategies to periodontal infections. We will conclude by reviewing how novel systems-biology approaches promise to unravel new details of the pathogenesis of periodontal diseases and hopefully lead to a better understanding of their mechanisms.
Collapse
|
47
|
Souto GR, Queiroz-Junior CM, de Abreu MHNG, Costa FO, Mesquita RA. Pro-inflammatory, Th1, Th2, Th17 cytokines and dendritic cells: a cross-sectional study in chronic periodontitis. PLoS One 2014; 9:e91636. [PMID: 24670840 PMCID: PMC3966767 DOI: 10.1371/journal.pone.0091636] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/11/2014] [Indexed: 01/22/2023] Open
Abstract
There are a limited number of studies correlating the different stages of dendritic cells (DC) maturation with cytokines in individuals presented chronic periodontitis (CP). The aim of the study was to evaluate the correlation among the expression of IL-2, IL-10, IL-4, IL-6, IFN-, TNF-α, and IL-17A with the presence of DC and mild-moderate or advanced CP. Gingival samples were obtained from 24 individuals with CP and six samples of normal mucosa (NM) overlapping third molar for controls of the levels of cytokines. Periodontal examination was performed. Immunohistochemical staining was carried out, revealing CD1a+ immature, Fator XIIIa+ immature, and CD83+ mature DCs. The inflammatory infiltrate was counted, and the cytokines were measured by flow cytometry. Densities of DCs and inflammatory infiltrate, cytokines, subtypes of CP, and clinical periodontal parameters were correlated and compared. IL-6 expression was correlated positively with the increased numbers of CD1a+ immature DCs. Levels of IL-2, TNF-α, IFN-, IL-10, and IL-17A were increased when compared with NM. The percentage of sites with clinical attachment level (CAL)>3 were positively correlated with densities of inflammatory infiltrate and negatively correlated with densities of immature DCs. IL-6 can contribute to the increase of the immature DCs in the CP. Higher levels of IL-2, TNF-α, IFN-, IL-10, and IL-17A cytokines were observed in CP. Higher densities of inflammatory infiltrate as well as lower densities of immature DCs can result in a more severe degree of human CP.
Collapse
Affiliation(s)
- Giovanna Ribeiro Souto
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Celso Martins Queiroz-Junior
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernando Oliveira Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
48
|
Huang S, Huang Q, Huang B, Lu F. The effect of Scutellaria baicalensis Georgi on immune response in mouse model of experimental periodontitis. J Dent Sci 2013. [DOI: 10.1016/j.jds.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
49
|
Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes. Proc Natl Acad Sci U S A 2013; 110:18525-30. [PMID: 24167272 DOI: 10.1073/pnas.1302829110] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.
Collapse
|
50
|
Preventive and therapeutic anti-TNF-α therapy with pentoxifylline decreases arthritis and the associated periodontal co-morbidity in mice. Life Sci 2013; 93:423-8. [PMID: 23911669 DOI: 10.1016/j.lfs.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 01/29/2023]
Abstract
AIMS The association between rheumatoid arthritis (RA) and periodontal disease (PD) has long been studied and some reports suggest that treating RA may improve the associated PD, and vice versa. This study aimed to evaluate the effects of an anti-tumor necrosis factor (TNF)-α therapy with pentoxifylline (PTX) in an experimental model of RA-associated PD. MAIN METHODS Male C57BL/6 mice were subjected to chronic antigen-induced arthritis (AIA) and daily treated with PTX (50mg/kg, i.p.) using preventive (Pre-PTX) or therapeutic (The-PTX) strategies. Fourteen days after the antigen challenge, mice were euthanized and knee joints, maxillae and serum were collected for microscopic and/or immunoenzymatic analysis. KEY FINDINGS AIA triggered significant leukocyte recruitment to the synovial cavity, tissue damage and proteoglycan loss in the knee joint. Pre-PTX and The-PTX regimens decreased these signs of joint inflammation. The increased levels of TNF-α and IL-17 in periarticular tissues of AIA mice were also reduced by both PTX treatments. Serum levels of C-reactive protein, which were augmented after AIA, were reduced by the PTX regimens. Concomitantly to AIA, mice presented alveolar bone loss, and recruitment of osteoclasts and neutrophils to periodontal tissues. Pre-PTX and The-PTX prevented and treated these signs of PD. PTX treatment also decreased TNF-α and increased IL-10 expression in the maxillae of AIA mice, although it did not affect the expression of IFN-γ and IL-17. SIGNIFICANCE The current study shows the anti-inflammatory and bone protective effects of preventive and therapeutic PTX treatments, which decreased the joint damage triggered by AIA and the associated periodontal co-morbidity.
Collapse
|