1
|
Marfil MJ, Blanco FC, Colombatti Olivieri MA, Eirin ME, Zumárraga MJ. Transmissibility of Mycobacterium pinnipedii in a murine model. Front Cell Infect Microbiol 2024; 14:1328981. [PMID: 38606297 PMCID: PMC11007016 DOI: 10.3389/fcimb.2024.1328981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The causative agent of tuberculosis in pinnipeds is Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis complex (MTC). The natural hosts are pinnipeds; however, other non-marine mammals, including humans, can also be infected. The transmissibility of a pathogen is related to its virulence. The transmissibility of a M. pinnipedii strain (i.e., 1856) was investigated in a murine model and compared with that of two Mycobacterium bovis strains (i.e., 534 and 04-303) with different reported virulence. Non-inoculated mice (sentinels) were co-housed with intratracheally inoculated mice. Detailed inspection of mice to search for visible tuberculosis lesions in the lungs and spleen was performed, and bacillus viability at 30, 60, and 90 days post-inoculation (dpi) was assayed. A transmissibility of 100% was recorded at 30 dpi in sentinel mice co-housed with the inoculated mice from the M. pinnipedii and M. bovis 04-303 groups, as evidenced by the recovery of viable M. pinnipedii and M. bovis from the lungs of sentinel mice. Mice inoculated with M. pinnipedii (1856) and M. bovis (534) survived until euthanized, whereas five of the M. bovis 04-303-inoculated mice died at 17 dpi. This study constitutes the first report of the transmissibility of a M. pinnipedii strain in mice and confirms the utility of this experimental model to study virulence features such as the transmission of poorly characterized MTC species.
Collapse
Affiliation(s)
- María Jimena Marfil
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma d Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) UEDD CONICET-Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), Centro de Investigación en Cs. Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Buenos Aires, Argentina
| | - María Alejandra Colombatti Olivieri
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) UEDD CONICET-Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), Centro de Investigación en Cs. Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Buenos Aires, Argentina
| | - María Emilia Eirin
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) UEDD CONICET-Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), Centro de Investigación en Cs. Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Buenos Aires, Argentina
| | - Martín José Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) UEDD CONICET-Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), Centro de Investigación en Cs. Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
2
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
3
|
Blanco FC, Gravisaco MJ, Bigi MM, García EA, Marquez C, McNeil M, Jackson M, Bigi F. Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Front Immunol 2021; 12:674643. [PMID: 34335572 PMCID: PMC8319915 DOI: 10.3389/fimmu.2021.674643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María José Gravisaco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - María Mercedes Bigi
- (Facultad de Agronomía, Universidad de Buenos Aires) School of Agronomy, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elizabeth Andrea García
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - Cecilia Marquez
- High Technology Analytical Centre, Laboratory, Buenos Aires, Argentina
| | - Mike McNeil
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Fabiana Bigi
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F. Rv2577 of Mycobacterium tuberculosis Is a Virulence Factor With Dual Phosphatase and Phosphodiesterase Functions. Front Microbiol 2020; 11:570794. [PMID: 33193164 PMCID: PMC7642983 DOI: 10.3389/fmicb.2020.570794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence.
Collapse
Affiliation(s)
- Marina Andrea Forrellad
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Rubén Marrero Diaz de Villegas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Cuidad Autónoma de Buenos Aires, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | | | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica (UBYPA), Instituto de Investigaciones Biológicas Clemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Bigi M, Vazquez CL, Castelão ABC, García EA, Cataldi AA, Jackson M, McNeil M, Soria M, Zumárraga MJ, Cabruja M, Gago G, Blanco FC, Nishibe C, Almeida NF, de Araújo FR, Bigi F. Analysing nonsynonymous mutations between two Mycobacterium bovis strains with contrasting pathogenic profiles. Vet Microbiol 2019; 239:108482. [PMID: 31759775 DOI: 10.1016/j.vetmic.2019.108482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/03/2023]
Abstract
Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis, a chronic infectious disease that can affect cattle, other domesticated species, wild animals and humans. This disease produces important economic losses worldwide. Two M. bovis strains (04-303 and 534) have been isolated in Argentina. Whereas the 04-303 strain was isolated from a wild boar, the 534 strain was obtained from cattle. In a previous study, six weeks after infection, the 04-303 strain induced 100% mortality in mice. By contrast, mice infected with the 534 strain survived, with limited tissue damage, after four months. In this study we compared all predictive proteins encoded in both M. bovis genomes. The comparative analysis revealed 141 polymorphic proteins between both strains. From these proteins, nine virulence proteins showed polymorphisms in 04-303, whereas five did it in the 534 strain. Remarkably, both strains contained a high level of polymorphism in proteins related to phthiocerol dimycocerosate (PDIM) synthesis or transport. Further experimental evidence indicated that only mutations in the 534 strain have an impact on PDIM synthesis. The observed reduction in PDIM content in the 534 strain, together with its low capacity to induce phagosome arrest, may be associated with the reported deficiency of this strain to replicate and survive inside bovine macrophages. The findings of this study could contribute to a better understanding of pathogenicity and virulence aspects of M. bovis, which is essential for further studies aiming at developing new vaccines and diagnostic techniques for bovines.
Collapse
Affiliation(s)
- Mercedes Bigi
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Microbiología Agrícola, INBA-CONICET, Buenos Aires, Argentina.
| | | | - Ana Beatriz C Castelão
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | | | - Mary Jackson
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Michael McNeil
- Colorado State University, Dept. of Microbiology, Immunology and Pathology, USA.
| | - Marcelo Soria
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Microbiología Agrícola, INBA-CONICET, Buenos Aires, Argentina.
| | | | - Matias Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | | | - Christiane Nishibe
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Nalvo F Almeida
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | - Fabiana Bigi
- Instituto de Biotecnología, IABIMO, CICVyA/INTA, Argentina.
| |
Collapse
|
6
|
Bovine macrophages responses to the infection with virulent and attenuated Leptospira interrogans serovar Pomona. Vet Microbiol 2019; 233:124-132. [DOI: 10.1016/j.vetmic.2019.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 11/19/2022]
|
7
|
Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom. Infect Immun 2018; 86:IAI.00385-17. [PMID: 29263113 PMCID: PMC5820943 DOI: 10.1128/iai.00385-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis, in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation.
Collapse
|
8
|
Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS, Camargo NCS, Heinemann MB, Guimarães AMS. Complete Genome Sequencing of Mycobacterium bovis SP38 and Comparative Genomics of Mycobacterium bovis and M. tuberculosis Strains. Front Microbiol 2017; 8:2389. [PMID: 29259589 PMCID: PMC5723337 DOI: 10.3389/fmicb.2017.02389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.
Collapse
Affiliation(s)
- Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson F de Souza
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C Soler Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana M S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Mycobacterium bovis Requires P27 (LprG) To Arrest Phagosome Maturation and Replicate within Bovine Macrophages. Infect Immun 2017; 85:IAI.00720-16. [PMID: 28031264 PMCID: PMC5328499 DOI: 10.1128/iai.00720-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/18/2016] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium bovis causes tuberculosis in a wide variety of mammals, with strong tropism for cattle and eventually humans. P27, also called LprG, is among the proteins involved in the mechanisms of the virulence and persistence of M. bovis and Mycobacterium tuberculosis. Here, we describe a novel function of P27 in the interaction of M. bovis with its natural host cell, the bovine macrophage. We found that a deletion in the p27-p55 operon impairs the replication of M. bovis in bovine macrophages. Importantly, we show for the first time that M. bovis arrests phagosome maturation in a process that depends on P27. This effect is P27 specific since complementation with wild-type p27 but not p55 fully restored the wild-type phenotype of the mutant strain; this indicates that P55 plays no important role during the early events of M. bovis infection. In addition, we also showed that the presence of P27 from M. smegmatis decreases the association of LAMP-3 with bead phagosomes, indicating that P27 itself blocks phagosome-lysosome fusion by modulating the traffic machinery in the cell host.
Collapse
|
11
|
Bigi MM, Lopez B, Blanco FC, Sasiain MDC, De la Barrera S, Marti MA, Sosa EJ, Fernández Do Porto DA, Ritacco V, Bigi F, Soria MA. Single nucleotide polymorphisms may explain the contrasting phenotypes of two variants of a multidrug-resistant Mycobacterium tuberculosis strain. Tuberculosis (Edinb) 2017; 103:28-36. [PMID: 28237031 DOI: 10.1016/j.tube.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/27/2016] [Accepted: 12/30/2016] [Indexed: 01/18/2023]
Abstract
Globally, about 4.5% of new tuberculosis (TB) cases are multi-drug-resistant (MDR), i.e. resistant to the two most powerful first-line anti-TB drugs. Indeed, 480,000 people developed MDR-TB in 2015 and 190,000 people died because of MDR-TB. The MDR Mycobacterium tuberculosis M family, which belongs to the Haarlem lineage, is highly prosperous in Argentina and capable of building up further drug resistance without impairing its ability to spread. In this study, we sequenced the whole genomes of a highly prosperous M-family strain (Mp) and its contemporary variant, strain 410, which produced only one recorded tuberculosis case in the last two decades. Previous reports have demonstrated that Mp induced dysfunctional CD8+ cytotoxic T cell activity, suggesting that this strain has the ability to evade the immune response against M. tuberculosis. Comparative analysis of Mp and 410 genomes revealed non-synonymous polymorphisms in eleven genes and five intergenic regions with polymorphisms between both strains. Some of these genes and promoter regions are involved in the metabolism of cell wall components, others in drug resistance and a SNP in Rv1861, a gene encoding a putative transglycosylase that produces a truncated protein in Mp. The mutation in Rv3787c, a putative S-adenosyl-l-methionine-dependent methyltransferase, is conserved in all of the other prosperous M strains here analysed and absent in non-prosperous M strains. Remarkably, three polymorphic promoter regions displayed differential transcriptional activity between Mp and 410. We speculate that the observed mutations/polymorphisms are associated with the reported higher capacity of Mp for modulating the host's immune response.
Collapse
Affiliation(s)
- María Mercedes Bigi
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Microbiología Agrícola.INBA-CONICET, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Beatriz Lopez
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Av. Vélez Sarsfield 563, C1282AFF, Buenos Aires, Argentina.
| | - Federico Carlos Blanco
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), N. Repetto and De los Reseros, Hurlingham, 1686, Buenos Aires, Argentina.
| | - María Del Carmen Sasiain
- IMEX-CONICET, Academia Nacional de Medicina, José Andrés Pacheco de Melo 3081, C1425AUM, Buenos Aires, Argentina.
| | - Silvia De la Barrera
- IMEX-CONICET, Academia Nacional de Medicina, José Andrés Pacheco de Melo 3081, C1425AUM, Buenos Aires, Argentina.
| | - Marcelo A Marti
- Departamento de Química Biológica, e IQUIBICEN-CONICET, FCEyN, UBA, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| | - Ezequiel Jorge Sosa
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, FCEyN, UBA, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| | - Darío Augusto Fernández Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, FCEyN, UBA, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| | - Viviana Ritacco
- Instituto Nacional de Enfermedades Infecciosas-ANLIS Carlos Malbrán, Av. Vélez Sarsfield 563, C1282AFF, Buenos Aires, Argentina.
| | - Fabiana Bigi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), N. Repetto and De los Reseros, Hurlingham, 1686, Buenos Aires, Argentina.
| | - Marcelo Abel Soria
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Microbiología Agrícola.INBA-CONICET, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Characterization of a Mycobacterium avium subsp. avium operon associated with virulence and drug detoxification. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809585. [PMID: 24967408 PMCID: PMC4055363 DOI: 10.1155/2014/809585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/02/2014] [Indexed: 11/24/2022]
Abstract
The lprG-p55 operon of Mycobacterium tuberculosis and Mycobacterium bovis is involved in the transport of toxic compounds. P55 is an efflux pump that provides resistance to several drugs, while LprG is a lipoprotein that modulates the host's immune response against mycobacteria. The knockout mutation of this operon severely reduces the replication of both mycobacterial species during infection in mice and increases susceptibility to toxic compounds. In order to gain insight into the function of LprG in the Mycobacterium avium complex, in this study, we assayed the effect of the deletion of lprG gene in the D4ER strain of Mycobacterium avium subsp. avium. The replacement of lprG gene with a hygromycin cassette caused a polar effect on the expression of p55. Also, a twofold decrease in ethidium bromide susceptibility was observed and the resistance to the antibiotics rifampicin, amikacin, linezolid, and rifabutin was impaired in the mutant strain. In addition, the mutation decreased the virulence of the bacteria in macrophages in vitro and in a mice model in vivo. These findings clearly indicate that functional LprG and P55 are necessary for the correct transport of toxic compounds and for the survival of MAA in vitro and in vivo.
Collapse
|
13
|
Blanco FC, Bigi F, Soria MA. Identification of potential biomarkers of disease progression in bovine tuberculosis. Vet Immunol Immunopathol 2014; 160:177-83. [PMID: 24856732 DOI: 10.1016/j.vetimm.2014.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
Bovine tuberculosis (bTB) remains an important animal and zoonotic disease in many countries. The diagnosis of bTB is based on tuberculin skin test and IFN-γ release assays (IGRA). Positive animals are separated from the herd and sacrificed. The cost of this procedure is difficult to afford for developing countries with high prevalence of bTB; therefore, the improvement of diagnostic methods and the identification of animals in different stages of the disease will be helpful to control the infection. To identify biomarkers that can discriminate between tuberculin positive cattle with and without tuberculosis lesions (ML+ and ML-, respectively), we assessed a group of immunological parameters with three different classification methods: lineal discriminant analysis (LDA), quadratic discriminant analysis (QDA) and K nearest neighbors (k-nn). For this purpose, we used data from 30 experimentally infected cattle. All the classifiers (LDA, QDA and k-nn) selected IL-2 and IL-17 as the most discriminatory variables. The best classification method was LDA using IL-17 and IL-2 as predictors. The addition of IL-10 to LDA improves the performance of the classifier to discriminate ML-individuals (93.3% vs. 86.7%). Thus, the expression of IL-17, IL-2 and, in some cases, IL-10 would serve as an additional tool to study disease progression in herds with a history of bTB.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA-INTA, N. Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | - Marcelo Abel Soria
- Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Wright DM, Allen AR, Mallon TR, McDowell SWJ, Bishop SC, Glass EJ, Bermingham ML, Woolliams JA, Skuce RA. Field-isolated genotypes of Mycobacterium bovis vary in virulence and influence case pathology but do not affect outbreak size. PLoS One 2013; 8:e74503. [PMID: 24086351 PMCID: PMC3781146 DOI: 10.1371/journal.pone.0074503] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
Strains of many infectious agents differ in fundamental epidemiological parameters including transmissibility, virulence and pathology. We investigated whether genotypes of Mycobacterium bovis (the causative agent of bovine tuberculosis, bTB) differ significantly in transmissibility and virulence, combining data from a nine-year survey of the genetic structure of the M. bovis population in Northern Ireland with detailed records of the cattle population during the same period. We used the size of herd breakdowns as a proxy measure of transmissibility and the proportion of skin test positive animals (reactors) that were visibly lesioned as a measure of virulence. Average breakdown size increased with herd size and varied depending on the manner of detection (routine herd testing or tracing of infectious contacts) but we found no significant variation among M. bovis genotypes in breakdown size once these factors had been accounted for. However breakdowns due to some genotypes had a greater proportion of lesioned reactors than others, indicating that there may be variation in virulence among genotypes. These findings indicate that the current bTB control programme may be detecting infected herds sufficiently quickly so that differences in virulence are not manifested in terms of outbreak sizes. We also investigated whether pathology of infected cattle varied according to M. bovis genotype, analysing the distribution of lesions recorded at post mortem inspection. We concentrated on the proportion of cases lesioned in the lower respiratory tract, which can indicate the relative importance of the respiratory and alimentary routes of infection. The distribution of lesions varied among genotypes and with cattle age and there were also subtle differences among breeds. Age and breed differences may be related to differences in susceptibility and husbandry, but reasons for variation in lesion distribution among genotypes require further investigation.
Collapse
Affiliation(s)
- David M. Wright
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| | - Adrian R. Allen
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Thomas R. Mallon
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Stanley W. J. McDowell
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Stephen C. Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Elizabeth J. Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Mairead L. Bermingham
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - John A. Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Robin A. Skuce
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
15
|
Forrellad MA, Bianco MV, Blanco FC, Nuñez J, Klepp LI, Vazquez CL, Santangelo MDLP, Rocha RV, Soria M, Golby P, Gutierrez MG, Bigi F. Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis. BMC Microbiol 2013; 13:200. [PMID: 24007602 PMCID: PMC3847441 DOI: 10.1186/1471-2180-13-200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022] Open
Abstract
Background Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the agent of human tuberculosis, has developed strategies involving proteins and other compounds called virulence factors to subvert human host defences and damage and invade the human host. Among these virulence-related proteins are the Mce proteins, which are encoded in the mce1, mce2, mce3 and mce4 operons of M. tuberculosis. The expression of the mce2 operon is negatively regulated by the Mce2R transcriptional repressor. Here we evaluated the role of Mce2R during the infection of M. tuberculosis in mice and macrophages and defined the genes whose expression is in vitro regulated by this transcriptional repressor. Results We used a specialized transduction method for generating a mce2R mutant of M. tuberculosis H37Rv. Although we found equivalent replication of the MtΔmce2R mutant and the wild type strains in mouse lungs, overexpression of Mce2R in the complemented strain (MtΔmce2RComp) significantly impaired its replication. During in vitro infection of macrophages, we observed a significantly increased association of the late endosomal marker LAMP-2 to MtΔmce2RComp-containing phagosomes as compared to MtΔmce2R and the wild type strains. Whole transcriptional analysis showed that Mce2R regulates mainly the expression of the mce2 operon, in the in vitro conditions studied. Conclusions The findings of the current study indicate that Mce2R weakly represses the in vivo expression of the mce2 operon in the studied conditions and argue for a role of the proteins encoded in Mce2R regulon in the arrest of phagosome maturation induced by M. tuberculosis.
Collapse
Affiliation(s)
- Marina Andrea Forrellad
- Instituto de Biotecnología, CICVyA-INTA, N, Repetto and De los Reseros, Hurlingham 1686, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Transcriptional response of bovine monocyte-derived macrophages after the infection with different Argentinean Mycobacterium bovis isolates. BIOMED RESEARCH INTERNATIONAL 2013; 2013:458278. [PMID: 23484118 PMCID: PMC3581155 DOI: 10.1155/2013/458278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022]
Abstract
Infection of bovines with Mycobacterium bovis causes important financial hardship in many countries presenting also a risk for humans. M. bovis is known to be adapted to survive and thrive within the intramacrophage environment. In spite of its relevance, at present the information about macrophage expression patterns is scarce, particularly regarding the bovine host. In this study, transcriptomic analysis was used to detect genes differentially expressed in macrophages derived from peripheral blood mononuclear cells at early stages of infection with two Argentinean strains of M. bovis, a virulent and an attenuated strains. The results showed that the number of differentially expressed genes in the cells infected with the virulent strain (5) was significantly lower than those in the cells infected with the attenuated strain (172). Several genes were more strongly expressed in infected macrophages. Among them, we detected encoding transcription factors, anthrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins, cytoskeleton proteins, protein of cell differentiation, and regulators of endocytic traffic of membrane. Quantitative real-time PCR of a selected group of differentially expressed genes confirmed the microarrays results. Altogether, the present results contribute to understanding the mechanisms involved in the early interaction of M. bovis with the bovine macrophage.
Collapse
|
17
|
Mah N, Perez-Iratxeta C, Andrade-Navarro MA. Outer membrane pore protein prediction in mycobacteria using genomic comparison. Microbiology (Reading) 2010; 156:2506-2515. [DOI: 10.1099/mic.0.040089-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins responsible for outer membrane transport across the unique membrane structure of Mycobacterium spp. are attractive drug targets in the treatment of human diseases caused by the mycobacterial pathogens, Mycobacterium tuberculosis, M. bovis, M. leprae and M. ulcerans. In contrast with Escherichia coli, relatively few outer-membrane proteins (OMPs) have been identified in Mycobacterium spp., largely due to the difficulties in isolating mycobacterial membrane proteins and our incomplete understanding of secretion mechanisms and cell wall structure in these organisms. To further expand our knowledge of these elusive proteins in mycobacteria, we have improved upon our previous method of OMP prediction in mycobacteria by taking advantage of genomic data from seven mycobacteria species. Our improved algorithm suggests 4333 sequences as putative OMPs in seven species with varying degrees of confidence. The most virulent pathogenic mycobacterial species are slightly enriched in these selected sequences. We present examples of predicted OMPs involved in horizontal transfer and paralogy expansion. Analysis of local secondary structure content allowed identification of small domains predicted to perform as OMPs; some examples show their involvement in events of tandem duplication and domain rearrangements. We discuss the taxonomic distribution of these discovered families and architectures, often specific to mycobacteria or the wider taxonomic class of Actinobacteria. Our results suggest that OMP functionality in mycobacteria is richer than expected and provide a resource to guide future research of these understudied proteins.
Collapse
Affiliation(s)
- Nancy Mah
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | |
Collapse
|