1
|
Dorneles EMS, Lima GK, Teixeira-Carvalho A, Araújo MSS, Martins-Filho OA, Sriranganathan N, Al Qublan H, Heinemann MB, Lage AP. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51. PLoS One 2015; 10:e0136696. [PMID: 26352261 PMCID: PMC4564183 DOI: 10.1371/journal.pone.0136696] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated.
Collapse
Affiliation(s)
- Elaine M. S. Dorneles
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Graciela K. Lima
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio S. S. Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A. Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Nammalwar Sriranganathan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hamzeh Al Qublan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Marcos B. Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrey P. Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Dorneles EMS, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res 2015; 46:76. [PMID: 26155935 PMCID: PMC4495609 DOI: 10.1186/s13567-015-0199-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/05/2015] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus vaccines play a central role in bovine brucellosis control/eradication programs and have been successfully used worldwide for decades. Strain 19 and RB51 are the approved B. abortus vaccines strains most commonly used to protect cattle against infection and abortion. However, due to some drawbacks shown by these vaccines much effort has been undertaken for the development of new vaccines, safer and more effective, that could also be used in other susceptible species of animals. In this paper, we present a review of the main aspects of the vaccines that have been used in the brucellosis control over the years and the current research advances in the development of new B. abortus vaccines.
Collapse
Affiliation(s)
- Elaine M S Dorneles
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Targeting TLR2 for vaccine development. J Immunol Res 2014; 2014:619410. [PMID: 25057505 PMCID: PMC4098989 DOI: 10.1155/2014/619410] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in adjuvant properties and to be effective at inducing cellular and humoral immune mechanisms in different animal species. However, contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine development are thus still debatable and more studies are needed to rationally explore its characteristics. Here, we resume the main features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.
Collapse
|