1
|
Koma T, Doi N, Takemoto M, Watanabe K, Yamamoto H, Nakashima S, Adachi A, Nomaguchi M. The Expression Level of HIV-1 Vif Is Optimized by Nucleotide Changes in the Genomic SA1D2prox Region during the Viral Adaptation Process. Viruses 2021; 13:2079. [PMID: 34696508 PMCID: PMC8537775 DOI: 10.3390/v13102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Vif plays an essential role in viral replication by antagonizing anti-viral cellular restriction factors, a family of APOBEC3 proteins. We have previously shown that naturally-occurring single-nucleotide mutations in the SA1D2prox region, which surrounds the splicing acceptor 1 and splicing donor 2 sites of the HIV-1 genome, dramatically alter the Vif expression level, resulting in variants with low or excessive Vif expression. In this study, we investigated how these HIV-1 variants with poor replication ability adapt and evolve under the pressure of APOBEC3 proteins. Adapted clones obtained through adaptation experiments exhibited an altered replication ability and Vif expression level compared to each parental clone. While various mutations were present throughout the viral genome, all replication-competent adapted clones with altered Vif expression levels were found to bear them within SA1D2prox, without exception. Indeed, the mutations identified within SA1D2prox were responsible for changes in the Vif expression levels and altered the splicing pattern. Moreover, for samples collected from HIV-1-infected patients, we showed that the nucleotide sequences of SA1D2prox can be chronologically changed and concomitantly affect the Vif expression levels. Taken together, these results demonstrated the importance of the SA1D2prox nucleotide sequence for modulating the Vif expression level during HIV-1 replication and adaptation.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Mai Takemoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Kyosuke Watanabe
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Yamamoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Satoshi Nakashima
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| |
Collapse
|
2
|
Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip. J Virol 2021; 95:e0217720. [PMID: 33883222 DOI: 10.1128/jvi.02177-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.
Collapse
|
3
|
Adachi A, Koma T, Doi N, Nomaguchi M. Commentary: Derivation of Simian Tropic HIV-1 Infectious Clone Reveals Virus Adaptation to a New Host. Front Cell Infect Microbiol 2020; 10:235. [PMID: 32500043 PMCID: PMC7243179 DOI: 10.3389/fcimb.2020.00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
4
|
Adachi A. Grand Challenge in Human/Animal Virology: Unseen, Smallest Replicative Entities Shape the Whole Globe. Front Microbiol 2020; 11:431. [PMID: 32256480 PMCID: PMC7093566 DOI: 10.3389/fmicb.2020.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan.,Tokushima University, Tokushima, Japan
| |
Collapse
|
5
|
Doi N, Koma T, Adachi A, Nomaguchi M. Expression Level of HIV-1 Vif Can Be Fluctuated by Natural Nucleotide Variations in the vif-Coding and Regulatory SA1D2prox Sequences of the Proviral Genome. Front Microbiol 2019; 10:2758. [PMID: 31849897 PMCID: PMC6893887 DOI: 10.3389/fmicb.2019.02758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022] Open
Abstract
Vif is required for HIV-1 replication in natural target cells by counteracting host restriction factors, APOBEC3 (A3) proteins. We recently demonstrated that Vif expression level can be changed by naturally occurring single-nucleotide variations within SA1D2prox of the HIV-1 genome. We also found that levels for vif/vpr mRNAs are inversely correlated. While amino acid sequence per se is critical for functionality, Vif expression level modulated by signal sequences in its coding region is likely to be important as well. There are two splicing sites in the region involved in vpr expression. To reveal possible fluctuations of Vif-expression level, we examined SA1D2prox and vif gene by chimeric approaches using HIV-1 subtypes B and C with distinct anti-A3 activity. In this report, recombinant clones in subtype B backbone carrying chimeric sequences with respect to SA1D2prox/vif and those within the vif-coding region were generated. Of these, clones containing vif-coding sequence of subtype C, especially its 3′ region, expressed vif/Vif at a decreased level but did at an increased level for vpr/Vpr. Clones with reduced vif/Vif level grew similarly or slightly better than a parental clone in weakly A3G-positive cells but more poorly in highly A3G-expressing cells. Three clones with this property were also tested for their A3-degrading activity. One of the clones appeared to have some defect in addition to the poor ability to express vif/Vif. Taken all together, our results show that natural variations in the SA1D2prox and vif-coding region can change the Vif-expression level and affect the HIV-1 replication potential.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
6
|
Doi N, Yokoyama M, Koma T, Kotani O, Sato H, Adachi A, Nomaguchi M. Concomitant Enhancement of HIV-1 Replication Potential and Neutralization-Resistance in Concert With Three Adaptive Mutations in Env V1/C2/C4 Domains. Front Microbiol 2019; 10:2. [PMID: 30705669 PMCID: PMC6344430 DOI: 10.3389/fmicb.2019.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 Env protein functions in the entry process and is the target of neutralizing antibodies. Its intrinsically high mutation rate is certainly one of driving forces for persistence/survival in hosts. For optimal replication in various environments, HIV-1 Env must continue to adapt and evolve through balancing sometimes incompatible function, replication fitness, and neutralization sensitivity. We have previously reported that adapted viruses emerge in repeated and prolonged cultures of cells originally infected with a macaque-tropic HIV-1NL4-3 derivative. We have also shown that the adapted viral clones exhibit enhanced growth potentials both in macaque PBMCs and individuals, and that three single-amino acid mutations are present in their Env V1/C2/C4 domains. In this study, we investigated how lab-adapted and highly neutralization-sensitive HIV-1NL4-3 adapts its Env to macaque cells with strongly replication-restrictive nature for HIV-1. While a single and two mutations gave a significantly enhanced replication phenotype in a macaque cell line and also in human cell lines that stably express either human CD4 or macaque CD4, the virus simultaneously carrying the three adaptive mutations always grew best. Entry kinetics of parental and triple mutant viruses were similar, whereas the mutant was significantly more readily inhibited for its infectivity by soluble CD4 than parental virus. Furthermore, molecular dynamics simulations of the Env ectodomain (gp120 and gp41 ectodomain) bound with CD4 suggest that the three mutations increase binding affinity of Env for CD4 in solution. Thus, it is quite likely that the affinity for CD4 of the mutant Env is enhanced relative to the parental Env. Neutralization sensitivity of the triple mutant to CD4 binding site antibodies was not significantly different from that of parental virus, whereas the mutant exhibited a considerably higher resistance against neutralization by a CD4-induced epitope antibody and Env trimer-targeting V1/V2 antibodies. These results suggest that the three adaptive mutations cooperatively promote viral growth via increased CD4 affinity, and also that they enhance viral resistance to several neutralization antibodies by changing the Env-trimer conformation. In total, we have verified here an HIV-1 adaptation pathway in host cells and individuals involving Env derived from a lab-adapted and highly neutralization-sensitive clone.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Osamu Kotani
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|
7
|
Doi N, Miura T, Mori H, Sakawaki H, Koma T, Adachi A, Nomaguchi M. CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques. Front Microbiol 2018; 9:2510. [PMID: 30405570 PMCID: PMC6200915 DOI: 10.3389/fmicb.2018.02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023] Open
Abstract
A major issue for present HIV-1 research is to establish model systems that reflect or mimic viral replication and pathogenesis actually observed in infected humans. To this end, various strategies using macaques as infection targets have long been pursued. In particular, experimental infections of rhesus macaques by HIV-1 derivatives have been believed to be best suited, if practicable, for studies on interaction of HIV-1 and humans under various circumstances. Recently, through in vitro genetic manipulations and viral cell-adaptations, we have successfully generated a series of HIV-1 derivatives with CXCR4-tropism or CCR5-tropism that grow in macaque cells to various degrees. Of these viruses, those with best replicative potentials can grow comparably with a pathogenic SIVmac in macaque cells by counteracting major restriction factors TRIM5, APOBEC3, and tetherin proteins. In this study, rhesus macaques were challenged with CXCR4-tropic (MN4/LSDQgtu) or CCR5-tropic (gtu + A4CI1) virus. The two viruses were found to productively infect rhesus macaques, being rhesus macaque-tropic HIV-1 (HIV-1rmt). However, plasma viral RNA was reduced to be an undetectable level in infected macaques at 5–6 weeks post-infection and thereafter. While replicated similarly well in rhesus peripheral blood mononuclear cells, MN4/LSDQgtu grew much better than gtu + A4CI1 in the animals. To the best of our knowledge, this is the first report demonstrating that HIV-1 derivatives (variants) grow in rhesus macaques. These viruses certainly constitute firm bases for generating HIV-1rmt clones pathogenic for rhesus monkeys, albeit they grow more poorly than pathogenic SIVmac and SHIV clones reported to date.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Mori
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Non-human Primate Experimental Facility, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Hirakata, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Doi N, Sakai Y, Adachi A, Nomaguchi M. Generation and characterization of new CCR5-tropic HIV-1rmt clones. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 64:272-279. [PMID: 28954995 DOI: 10.2152/jmi.64.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To develop effective non-human primate models for coping with numerous HIV-1/AIDS studies, rhesus macaque-tropic HIV-1 (HIV-1rmt) clones with a variety of biological properties are required. Such clones, if available, are powerful tools to experimentally elucidate HIV-1 replication and pathogenicity in host individuals, and also to develop anti-HIV-1 drugs/vaccines. However, only limited numbers of HIV-1rmt clones have been currently reported. In the present study, we generated new HIV-1rmt clones carrying various CCR5-tropic env (envelope) genes by standard recombinant DNA and intracellular homologous recombination techniques. Resultant virus clones contain the env sequences derived from an AIDS-inducible laboratory or two clinically isolated viral strains. We further constructed their variant clones bearing N160K, S304G, or G310R mutation in Env that potentially can change the viruses to better grow. Newly generated clones were analyzed for their virological properties such as Env expression, single-cycle infectivity, and multi-cycle replication ability. Out of a number of new clones examined, two were found to grow better in macaque cells than the previously constructed clone used for comparison. Our study described here constitutes the initial and essential step towards obtaining CCR5-tropic HIV-1rmt clones useful for various basic and clinical research projects on infected individuals. J. Med. Invest. 64: 272-279, August, 2017.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | - Yosuke Sakai
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | | | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| |
Collapse
|
9
|
Nomaguchi M, Doi N, Koma T, Adachi A. HIV-1 mutates to adapt in fluxing environments. Microbes Infect 2017; 20:610-614. [PMID: 28859896 DOI: 10.1016/j.micinf.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is specifically adapted for replication, persistence, transmission, and survival in humans. HIV-1 is highly mutable in nature, and well responds to a variety of environmental pressures by altering its genome sequences. In this review, we have described experimental evidence that demonstrates this phantasmagoric property of HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan; Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan.
| |
Collapse
|
10
|
Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels. J Virol 2016; 90:4563-4578. [PMID: 26912631 DOI: 10.1128/jvi.02939-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving forces behind mutual evolution. The interplay of cellular APOBEC3G and viral Vif proteins is a typical example. Here, we demonstrate that naturally occurring single-nucleotide variations in the proximal region of splicing acceptor 1 (SA1prox) of the HIV-1 genome frequently alter Vif expression levels, thereby modulating viral replication potential in cells with various ABOBEC3G levels. The results of the present study reveal a previously unidentified and important way for HIV-1 to compete with APOBEC3G restriction by regulating its Vif expression levels. We propose that SA1prox plays a regulatory role in Vif counteraction against APOBEC3G in order to contribute to HIV-1 replication and evolution, and this may be applicable to other primate lentiviruses.
Collapse
|
11
|
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells. Front Microbiol 2016; 7:110. [PMID: 26903989 PMCID: PMC4746247 DOI: 10.3389/fmicb.2016.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Tadahito Kanda
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan; Department of Research Promotion, Division of Infectious Disease Research, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
12
|
Doi N, Sakai Y, Miyazaki Y, Adachi A, Nomaguchi M. Single-amino acid mutation 66SR in Gag-matrix enhances viral single-cycle infectivity of R5-tropic HIV-1rmt. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 62:228-32. [PMID: 26399353 DOI: 10.2152/jmi.62.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We recently constructed two rhesus macaque-tropic human immunodeficiency virus type 1 (HIV-1rmt) clones with CXCR4 or CCR5 tropism, but a CCR5-tropic HIV-1rmt clone grew more poorly than a CXCR4-topic clone. It has been demonstrated that interaction between viral Gag-matrix (MA) and Env-gp41 cytoplasmic tail is important for virion-incorporation of Env. Concordantly, Gag-MA mutations (62QR and 66SR) that rescue defects in virion-incorporation of Env/viral replication were reported. In this study, we analyzed effects of these Gag-MA mutations on R5-tropic HIV-1rmt replication potentials. While introduction of 62QR into three HIV-1rmt clones tested reduced their multi-cycle replication ability in rhesus lymphocytes or abolish single-cycle infectivity for luciferase reporter cells, three R5-tropic HIV-1rmt clones carrying 66SR exhibited similar growth kinetics to those of their parental clones. One such clone, 66SR+5gtu, appeared to induce stronger cytopathic effects than parental clone 5gtu. We therefore investigated effects of 66SR mutation on viral replication in more detail. Single-cycle infectivity of 66SR+5gtu was enhanced relative to that of 5gtu, but 66SR+5gtu virion production was significantly decreased compared to the 5gtu level. Gag-MA 66SR mutation may be useful to improve growth potentials of the R5-tropic HIV-1rmt clones.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | | | | | | | |
Collapse
|
13
|
Doi N, Adachi A, Nomaguchi M. Growth properties of macaque-tropic HIV-1 clones carrying vpr/vpx genes derived from simian immunodeficiency viruses in place of their vpr regions. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 61:374-9. [PMID: 25264057 DOI: 10.2152/jmi.61.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We have previously generated a macaque-tropic human immunodeficiency virus type 1 (HIV-1mt) clone designated MN4/LSDQgtu by genetic manipulation from a parental virus that replicates poorly in rhesus macaque cells. In rhesus cell line M1.3S and peripheral blood mononuclear cells (PBMCs), MN4/LSDQgtu grows comparably to a standard simian immunodeficiency virus clone derived from the rhesus macaque (SIVmac239) that can induce the acquired immunodeficiency syndrome (AIDS) in the animals. In this study, we further modified the Vpr-coding region of MN4/LSDQgtu genome by introducing vpr gene of an SIV clone from the greater spot-nosed monkey (SIVgsn166) or vpx gene of SIVmac239 to generate four new clones for determining functional importance of the central genomic area. Furthermore, two clones with an additional Gag-p6 mutation were made to ensure the virion-packaging of Vpx. In addition, accessory gene mutant clones of MN4/LSDQgtu with a frame-shift mutation, including a vpr mutant, were constructed and their growth properties were examined. Infection experiments showed that newly constructed viruses all grew poorly to various degrees in M1.3S cells, relative to MN4/LSDQgtu. Together with the previous data, our results here show that vpr/vpx gene in the appropriate context of HIV-1 genome is critical for viral growth ability.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | |
Collapse
|
14
|
Lei AH, Zhang GH, Tian RR, Zhu JW, Zheng HY, Pang W, Zheng YT. Replication potentials of HIV-1/HSIV in PBMCs from northern pig-tailed macaque (Macaca leonina). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:186-95. [PMID: 24866489 DOI: 10.11813/j.issn.0254-5853.2014.3.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species of Old World monkey, and we previously found that PBMCs from M. leonina were susceptible to human immunodeficiency virus type 1 (HIV-1), which may be due to the absence of a TRIM5 protein restricting HIV-1 replication. Here we investigated the infection potentials of six laboratory adapted HIV-1 strains and three primary HIV-1 isolates in PBMCs from M. leonina. The results indicate that these strains are characterized by various but low replication levels, and among which, HIV-1NL4-3 shows the highest replication ability. Based on the abundant evidence of species-specific interactions between restriction factors APOBEC3 and HIV/SIV-derived Vif protein, we subsequently examined the replication potentials of vif-substituted HIV-1 (HSIV) in M. leonina PBMCs. Notably, HSIV-vifmac and stHIV-1SV chimeras, two HIV-1NL4-3-derived viruses encoding the viral infectivity factor (Vif) protein from SIVmac239, replicated robustly in cells from M. leonina, which suggests that HSIV could effectively antagonize the antiviral activity of APOBEC3 proteins expressed in cells of M. leonina. Therefore, our data demonstrate that M. leonina has the potential to be developed into a promising animal model for human AIDS.
Collapse
Affiliation(s)
- Ai-Hua Lei
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Gao-Hong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Wu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Science and Technology of China, Hefei 230026, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
15
|
Nomaguchi M, Nakayama EE, Yokoyama M, Doi N, Igarashi T, Shioda T, Sato H, Adachi A. Distinct combinations of amino acid substitutions in N-terminal domain of Gag-capsid afford HIV-1 resistance to rhesus TRIM5α. Microbes Infect 2014; 16:936-44. [PMID: 25195168 DOI: 10.1016/j.micinf.2014.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/28/2022]
Abstract
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIM5-restriction, we newly generated macaque-tropic HIV-1 (HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIM5-overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-terminal domains were different. Experimentally, the two CAs exhibited incomplete TRIM5α-resistance relative to SIVmac239 CA and different degrees of susceptibility to various TRIM5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to confer significant TRIM5-resistance on HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan; Japanese Foundation for AIDS Prevention, Chiyoda-ku, Tokyo, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
16
|
Otsuki H, Yoneda M, Igarashi T, Miura T. Generation of a monkey-tropic human immunodeficiency virus type 1 carrying env from a CCR5-tropic subtype C clinical isolate. Virology 2014; 460-461:1-10. [PMID: 25010265 DOI: 10.1016/j.virol.2014.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 04/25/2014] [Indexed: 02/03/2023]
Abstract
Several derivatives of human immunodeficiency virus type 1 (HIV-1) that evade macaque restriction factors and establish infection in pig-tailed macaques (PtMs) have been described. These monkey-tropic HIV-1s utilize CXCR4 as a co-receptor that differs from CCR5 used by most currently circulating HIV-1 strains. We generated a new monkey-tropic HIV-1 carrying env from a CCR5-tropic subtype C HIV-1 clinical isolate. Using intracellular homologous recombination, we generated an uncloned chimeric virus consisting of at least seven types of recombination breakpoints in the region between vpr and env. The virus increased its replication capacity while maintaining CCR5 tropism after in vitro passage in PtM primary lymphocytes. PtM infection with the adapted virus exhibited high peak viremia levels in plasma while the virus was undetectable at 12-16 weeks. This virus serves as starting point for generating a pathogenic monkey-tropic HIV-1 with CCR5-tropic subtype C env, perhaps through serial passage in macaques.
Collapse
Affiliation(s)
- Hiroyuki Otsuki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mai Yoneda
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
17
|
Taya K, Nakayama EE, Shioda T. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages. PLoS One 2014; 9:e90969. [PMID: 24599229 PMCID: PMC3944824 DOI: 10.1371/journal.pone.0090969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.
Collapse
Affiliation(s)
- Kahoru Taya
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
18
|
Natural single-nucleotide polymorphisms in the 3' region of the HIV-1 pol gene modulate viral replication ability. J Virol 2014; 88:4145-60. [PMID: 24478432 DOI: 10.1128/jvi.01859-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED We previously showed that prototype macaque-tropic human immunodeficiency virus type 1 (HIV-1) acquired nonsynonymous growth-enhancing mutations within a narrow genomic region during the adaptation process in macaque cells. These adaptive mutations were clustered in the 3' region of the pol gene, encoding a small portion of the C-terminal domain of integrase (IN). Mutations in HIV-1 IN have been reported to have pleiotropic effects on both the early and late phases in viral replication. cis-acting functions in the IN-coding sequence for viral gene expression have also been reported. We here demonstrated that the adaptive mutations promoted viral growth by increasing virion production with no positive effects on the early replication phase. Synonymous codon alterations in one of the adaptive mutations influenced virion production levels, which suggested nucleotide-dependent regulation. Indeed, when the single-nucleotide natural polymorphisms observed in the 3' regions of 196 HIV-1/simian immunodeficiency virus (SIVcpz) pol genes (nucleotides [nt] 4895 to 4929 for HIV-1 NL4-3) were introduced into macaque- and human-tropic HIV-1 clones, more than half exhibited altered replication potentials. Moreover, single-nucleotide mutations caused parallel increases or decreases in the expression levels of viral late proteins and viral replication potentials. We also showed that the overall expression profiles of viral mRNAs were markedly changed by single-nucleotide mutations. These results demonstrate that the 3' region of the HIV-1 pol gene (nt 4895 to 4929) can alter viral replication potential by modulating the expression pattern of viral mRNAs in a nucleotide-dependent manner. IMPORTANCE Viruses have the plasticity to adapt themselves under various constraints. HIV-1 can mutate and evolve in growth-restrictive cells by acquiring adaptive changes in its genome. We have previously identified some growth-enhancing mutations in a narrow region of the IN-coding sequence, in which a number of cis-acting elements are located. We now focus on the virological significance of this pol gene region and the mechanistic basis underlying its effects on viral replication. We have found several naturally occurring synonymous mutations within this region that alter viral replication potentials. The effects caused by these natural single-nucleotide polymorphisms are linked to the definite expression patterns of viral mRNAs. We show here that the nucleotide sequence of the pol gene (nucleotides 4895 to 4929 for HIV-1 NL4-3) plays an important role in HIV-1 replication by modulating viral gene expression.
Collapse
|
19
|
Generation of rhesus macaque-tropic HIV-1 clones that are resistant to major anti-HIV-1 restriction factors. J Virol 2013; 87:11447-61. [PMID: 23966385 DOI: 10.1128/jvi.01549-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.
Collapse
|
20
|
Doi N, Okubo A, Yamane M, Sakai Y, Adachi A, Nomaguchi M. Growth potentials of CCR5-tropic/CXCR4-tropic HIV-1mt clones in macaque cells. Front Microbiol 2013; 4:218. [PMID: 23908651 PMCID: PMC3725405 DOI: 10.3389/fmicb.2013.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 11/17/2022] Open
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Saito A, Akari H. Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Front Microbiol 2013; 4:187. [PMID: 23847610 PMCID: PMC3705164 DOI: 10.3389/fmicb.2013.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/20/2013] [Indexed: 12/02/2022] Open
Abstract
Macaque monkeys serve as important animal models for understanding the pathogenesis of lentiviral infections. Since human immunodeficiency virus type 1 (HIV-1) hardly replicates in macaque cells, simian immunodeficiency virus (SIV) or chimeric viruses between HIV-1 and SIV (SHIV) have been used as challenge viruses in this research field. These viruses, however, are genetically distant from HIV-1. Therefore, in order to evaluate the efficacy of anti-HIV-1 drugs and vaccines in macaques, the development of a macaque-tropic HIV-1 (HIV-1mt) having the ability to replicate efficiently in macaques has long been desired. Recent studies have demonstrated that host restriction factors, such as APOBEC3 family and TRIM5, impose a strong barrier against HIV-1 replication in macaque cells. By evading these restriction factors, others and we have succeeded in developing an HIV-1mt that is able to replicate in macaques. In this review, we have attempted to shed light on the role of host factors that affect the susceptibility of macaques to HIV-1mt infection, especially by focusing on TRIM5-related factors.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University Inuyama, Japan ; Japan Foundation for AIDS Prevention Chiyoda-ku, Japan
| | | |
Collapse
|
22
|
Saito A, Nomaguchi M, Kono K, Iwatani Y, Yokoyama M, Yasutomi Y, Sato H, Shioda T, Sugiura W, Matano T, Adachi A, Nakayama EE, Akari H. TRIM5 genotypes in cynomolgus monkeys primarily influence inter-individual diversity in susceptibility to monkey-tropic human immunodeficiency virus type 1. J Gen Virol 2013; 94:1318-1324. [PMID: 23486671 DOI: 10.1099/vir.0.050252-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TRIM5α restricts human immunodeficiency virus type 1 (HIV-1) infection in cynomolgus monkey (CM) cells. We previously reported that a TRIMCyp allele expressing TRIM5-cyclophilin A fusion protein was frequently found in CMs. Here, we examined the influence of TRIM5 gene variation on the susceptibility of CMs to a monkey-tropic HIV-1 derivative (HIV-1mt) and found that TRIMCyp homozygotes were highly susceptible to HIV-1mt not only in vitro but also in vivo. These results provide important insights into the inter-individual differences in susceptibility of macaques to HIV-1mt.
Collapse
Affiliation(s)
- Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wataru Sugiura
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, Aichi 460-0001, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima, Tokushima 770-8503, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| |
Collapse
|