1
|
Xin Q, Liang X, Yang J, Wang X, Hu F, Jiang M, Liu Y, Gong J, Pan Y, Liu L, Xu J, Cui Y, Qin H, Bai H, Li Y, Ma J, Zhang C, Shi B. Metabolomic alterations in the plasma of patients with various clinical manifestations of COVID-19. Virol J 2024; 21:266. [PMID: 39468659 PMCID: PMC11520427 DOI: 10.1186/s12985-024-02523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The metabolomic profiles of individuals with different clinical manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have not been clearly characterized. METHODS We performed metabolomics analysis of 166 individuals, including 62 healthy controls, 16 individuals with asymptomatic SARS-CoV-2 infection, and 88 patients with moderate (n = 42) and severe (n = 46) symptomatic 2019 coronavirus disease (COVID-19; 17 with short-term and 34 with long-term nucleic-acid test positivity). By examining differential expression, we identified candidate metabolites associated with different SARS-CoV-2 infection presentations. Functional and machine learning analyses were performed to explore the metabolites' functions and verify their candidacy as biomarkers. RESULTS A total of 417 metabolites were detected. We discovered 70 differentially expressed metabolites that may help differentiate asymptomatic infections from healthy controls and COVID-19 patients with different disease severity. Cyclamic acid and N-Acetylneuraminic Acid were identified to distinguish symptomatic infected patients and asymptomatic infected patients. Shikimic Acid, Glycyrrhetinic acid and 3-Hydroxybutyrate can supply significant insights for distinguishing short-term and long-term nucleic-acid test positivity. CONCLUSION Metabolomic profiling may highlight novel biomarkers for the identification of individuals with asymptomatic SARS-CoV-2 infection and further our understanding of the molecular pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Qi Xin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiao Liang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Meng Jiang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Gong
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiwen Pan
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lijuan Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yuxin Cui
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Yixin Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an, 710000, China.
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
2
|
Chen X, Liao B, Ren T, Liao Z, Huang Z, Lin Y, Zhong S, Li J, Wen S, Li Y, Lin X, Du X, Yang Y, Guo J, Zhu X, Lin H, Liu R, Wang J. Adjuvant activity of cordycepin, a natural derivative of adenosine from Cordyceps militaris, on an inactivated rabies vaccine in an animal model. Heliyon 2024; 10:e24612. [PMID: 38293396 PMCID: PMC10826310 DOI: 10.1016/j.heliyon.2024.e24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.
Collapse
Affiliation(s)
- Xin Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Boyu Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Tianci Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhipeng Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zijie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yujuan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shouhao Zhong
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiaying Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yingyan Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xingchen Du
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohui Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Haishu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| |
Collapse
|
3
|
Ferrari D, Idzko M, Müller T, Manservigi R, Marconi P. Purinergic Signaling: A New Pharmacological Target Against Viruses? Trends Pharmacol Sci 2018; 39:926-936. [PMID: 30292585 DOI: 10.1016/j.tips.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Viral diseases represent a major global problem in human health, with high morbidity and mortality. Despite recent progress in antiviral treatments, several viral diseases are still not controlled and millions suffer from them every year. It has recently emerged that purinergic signaling participates in viral infection and replication. Furthermore, stimulation of purinergic receptors in infected cells also induces inflammatory and antiviral responses, thus contributing to the host antiviral defense. Here we review the multiple roles played by the purinergic signaling network in cell-virus interactions that can lead either to viral maintenance in the cells or, by contrast, to stronger antiviral responses, and discuss potential future applications of purinergic signaling modulation for the treatment of viral diseases.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Marco Idzko
- Department of Pneumology, Medical University of Vienna, Vienna, Austria
| | - Tobias Müller
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberto Manservigi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
NTPDase and 5'-nucleotidase activities in synaptosomes of rabbits experimentally infected with BoHV-5. J Neurovirol 2015; 21:518-24. [PMID: 26025330 DOI: 10.1007/s13365-015-0349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Bovine herpesvirus type 5 (BoHV-5) is the causative agent of herpetic meningoencephalitis in cattle. The purinergic system is described as a modulator of the immune response and neuroinflammation. These functions are related to the extracellular nucleotides concentration. NTPDase and 5'-nucleotidase are enzymes responsible for controlling the extracellular concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine (ADO). The aim of this study is to determinate the ectonucleotidase activity in cortical synaptosomes and synaptosomes from the hippocampus of rabbits experimentally infected with BoHV-5. Rabbits were divided into four groups, two control groups (non-inoculated animals), and two infected groups (inoculated with BoHV-5). The infected groups received 0.5 ml of BoHV-5 suspension with 10(7.5)TCID50 of viral strain SV-507/99, per paranasal sinuses, and the control groups received 0.5 ml of minimum essential media per paranasal sinuses. Animals were submitted to euthanasia on days 7 and 12 post-inoculation (p.i.); cerebral cortex and hippocampus were collected for the synaptosomes isolation and posterior determination of the ectonucleotidase activities. The results showed a decrease (P < 0.05) in ectonucleotidase activity in synaptosomes from the cerebral cortex of infected rabbits, whereas an increased (P < 0.05) ectonucleotidase activity was observed in synaptosomes from the hippocampus. These differences may be related with the heterogeneous distribution of ectonucleotidases in the different brain regions and also with the viral infectivity. Therefore, it is possible to speculate that BoHV-5 replication results in changes in ectonucleotidase activity in the brain, which may contribute to the neurological signs commonly observed in this disease.
Collapse
|