Different Effects of Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutations on Cytotoxic T Lymphocyte Recognition between HIV-1 Subtype B and Subtype A/E Infections.
J Virol 2015;
89:7363-72. [PMID:
25972553 DOI:
10.1128/jvi.00974-15]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED
The effect of antiretroviral drug resistance mutations on cytotoxic T lymphocyte (CTL) recognition has been analyzed in HIV-1 subtype B infections, but it remains unclear in infections by other HIV-1 subtypes that are epidemic in countries where antiretroviral drugs are not effectively used. We investigated the effect of nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI)-resistance mutations (Y181C, Y181I, and Y181V) on epitope recognition by CTLs specific for 3 different HIV-1 epitopes (HLA-A*02:01-restricted IV10, HLA-B*35:01-restricted NY9, and HLA-C*12:02-restricted KY9) in subtype B and subtype A/E infections and the accumulation of these mutations in treatment-naive Japanese and Vietnamese. These NNRTI-resistance mutations critically affected NY9-specific and KY9-specific T cell responses in the subtype B infections, whereas they showed a different effect on IV10-specific T cell responses among the subtype B-infected individuals. These mutations affected IV10-specific T cell responses but weakly affected NY9-specific T cell responses in the subtype A/E infections. The substitution at position 3 of NY9 epitope which was found in the subtype A/E virus differently influenced the peptide binding to HLA-B*35:01, suggesting that the differences in peptide binding may result in the differences in T cell recognition between the subtype B virus and A/E virus infections. The Y181C mutation was found to be accumulating in treatment-naive Vietnamese infected with the subtype A/E virus. The present study demonstrated different effects of NNRTI-resistance RT181 mutations on CTL responses between the 2 subtype infections. The Y181C mutation may influence HIV-1 control by the CTLs in Vietnam, since this mutation has been accumulating in treatment-naive Vietnamese.
IMPORTANCE
Antiretroviral therapy leads to the emergence of drug-resistant HIV-1, resulting in virological and clinical failures. Though HIV-1-specific CTLs play a critical role in HIV-1 infection, some of drug resistance mutations located in CTL epitopes are known to affect HIV-1-specific CTL responses. Nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistance RT181 mutations are frequently observed in patients treated with NNRTIs. Such drug resistance mutations may have an influence on immune control by HIV-1-specific CTLs, especially in countries where antiretroviral drugs are not effectively used. We here investigated the effect of three NNRTI-resistance RT181 mutations on immune responses by HIV-1-specific CTLs and the recent accumulation of these mutations in treatment-naive Vietnamese infected with HIV-1 subtype A/E virus. RT181 mutations affected CTL recognition in both subtype A/E and B infections, while the RT Y181C mutation has been accumulating in treatment-naive Vietnamese. The results suggest that the Y181C mutation may influence HIV-1 control by CTLs in Vietnam.
Collapse