1
|
Almeida BR, Barros BCSC, Barros DTL, Orikaza CM, Suzuki E. Paracoccidioides brasiliensis Induces α3 Integrin Lysosomal Degradation in Lung Epithelial Cells. J Fungi (Basel) 2023; 9:912. [PMID: 37755020 PMCID: PMC10532483 DOI: 10.3390/jof9090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Studies on the pathogen-host interaction are crucial for the understanding of the mechanisms involved in the establishment, maintenance, and spread of infection. In recent years, our research group has observed that the P. brasiliensis species interact with integrin family receptors and increase the expression of α3 integrin in lung epithelial cells within 5 h of infection. Interestingly, α3 integrin levels were reduced by approximately 99% after 24 h of infection with P. brasiliensis compared to non-infected cells. In this work, we show that, during infection with this fungus, α3 integrin is increased in the late endosomes of A549 lung epithelial cells. We also observed that the inhibitor of the lysosomal activity bafilomycin A1 was able to inhibit the decrease in α3 integrin levels. In addition, the silencing of the charged multivesicular body protein 3 (CHMP3) inhibited the reduction in α3 integrin levels induced by P. brasiliensis in A549 cells. Thus, together, these results indicate that this fungus induces the degradation of α3 integrin in A549 lung epithelial cells by hijacking the host cell endolysosomal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.)
| |
Collapse
|
2
|
Barros BCSC, Almeida BR, Barros DTL, Toledo MS, Suzuki E. Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. J Fungi (Basel) 2022; 8:jof8060548. [PMID: 35736031 PMCID: PMC9225092 DOI: 10.3390/jof8060548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
The respiratory epithelium is highly complex, and its composition varies along the conducting airways and alveoli. In addition to their primary function in maintaining the respiratory barrier and lung homeostasis for gas exchange, epithelial cells interact with inhaled pathogens, which can manipulate cell signaling pathways, promoting adhesion to these cells or hosting tissue invasion. Moreover, pathogens (or their products) can induce the secretion of chemokines and cytokines by epithelial cells, and in this way, these host cells communicate with the immune system, modulating host defenses and inflammatory outcomes. This review will focus on the response of respiratory epithelial cells to two human fungal pathogens that cause systemic mycoses: Aspergillus and Paracoccidioides. Some of the host epithelial cell receptors and signaling pathways, in addition to fungal adhesins or other molecules that are responsible for fungal adhesion, invasion, or induction of cytokine secretion will be addressed in this review.
Collapse
Affiliation(s)
- Bianca C. S. C. Barros
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Bruna R. Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Debora T. L. Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
| | - Marcos S. Toledo
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Leal Prado, São Paulo 04023-062, SP, Brazil;
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Ed. Antonio C. M. Paiva, São Paulo 04023-062, SP, Brazil; (B.R.A.); (D.T.L.B.)
- Correspondence:
| |
Collapse
|
3
|
de Barros BCSC, Almeida BR, Suzuki E. Paracoccidioides brasiliensis downmodulates α3 integrin levels in human lung epithelial cells in a TLR2-dependent manner. Sci Rep 2020; 10:19483. [PMID: 33173103 PMCID: PMC7655819 DOI: 10.1038/s41598-020-76557-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America and may be caused by the species Paracoccidioides brasiliensis. In the lungs, this fungus interacts with epithelial cells, activating host cell signalling pathways, resulting in the production of inflammatory mediators. This event may be initiated through the activation of Pattern-Recognition Receptors such as Toll-like Receptors (TLRs). By interacting with cell wall components, TLR2 is frequently related to fungal infections. In this work, we show that, after 24 h post-infection with P. brasiliensis, A549 lung epithelial cells presented higher TLR2 levels, which is important for IL-8 secretion. Besides, integrins may also participate in pathogen recognition by host cells. We verified that P. brasiliensis increased α3 integrin levels in A549 cells after 5 h of infection and promoted interaction between this receptor and TLR2. However, after 24 h, surprisingly, we verified a decrease of α3 integrin levels, which was dependent on direct contact between fungi and epithelial cells. Likewise, we observed that TLR2 is important to downmodulate α3 integrin levels after 24 h of infection. Thus, P. brasiliensis can modulate the host inflammatory response by exploiting host cell receptors and cell signalling pathways.
Collapse
Affiliation(s)
| | - Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil.
| |
Collapse
|
4
|
Almeida BR, Barros BCSC, Araújo ACL, Alcantara C, Suzuki E. Paracoccidioides species present distinct fungal adherence to epithelial lung cells and promote different IL-8 secretion levels. Med Microbiol Immunol 2019; 209:59-67. [PMID: 31673845 DOI: 10.1007/s00430-019-00639-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Fungi that belong to the genus Paracoccidioides are the etiologic agents of paracoccidioidomycosis, a human systemic mycosis, which occurs in Latin America. Epithelial cell is one of the first cells that interact with these fungi and responds by secreting inflammatory mediators such as cytokines. In the present study, we demonstrate that yeasts of different isolates of Paracoccidioides brasiliensis (Pb18 and Pb03) and Paracoccidioides lutzii (Pb01) distinctly promoted interleukin (IL)-8 secretion by the lung epithelial cell line A549. Depending on the isolate, this cytokine release may rely on the epithelial cell interaction with fungal secreted components or direct contact with the pathogen. In addition, adhesion of yeasts to the pulmonary epithelial cells was also different among Paracoccidioides isolates, and the highest percentage of A549 cells with adhered fungi was observed with P. lutzii. All Paracoccidioides isolates induced an expression increase of α3 and α5 integrins in A549 cells and, using small interfering RNA, we observed that the integrin silencing promoted a reduction of P. lutzii adhesion, which suggests the involvement of integrins in this event. Together, these results indicate that host epithelial cell response may depend on the isolate of Paracoccidioides.
Collapse
Affiliation(s)
- Bruna Rocha Almeida
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Bianca Carla Silva Campitelli Barros
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Ana Clara Liguori Araújo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Cristiane Alcantara
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 862-Ed. Antônio C. M. Paiva-6 andar, São Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
5
|
Mendes RP, Cavalcante RDS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JDF, Fabro AT, Bosco SDMG, Bagagli E, Hahn RC, Levorato AD. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol J 2017; 11:224-282. [PMID: 29204222 PMCID: PMC5695158 DOI: 10.2174/1874285801711010224] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This review article summarizes and updates the knowledge on paracoccidioidomycosis. P lutzii and the cryptic species of P. brasiliensis and their geographical distribution in Latin America, explaining the difficulties observed in the serological diagnosis. OBJECTIVES Emphasis has been placed on some genetic factors as predisposing condition for paracoccidioidomycosis. Veterinary aspects were focused, showing the wide distribution of infection among animals. The cell-mediated immunity was better characterized, incorporating the recent findings. METHODS Serological methods for diagnosis were also compared for their parameters of accuracy, including the analysis of relapse. RESULTS Clinical forms have been better classified in order to include the pictures less frequently observesiod. CONCLUSION Itraconazole and the trimethoprim-sulfamethoxazole combination was compared regarding efficacy, effectiveness and safety, demonstrating that azole should be the first choice in the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Rinaldo Poncio Mendes
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Ricardo de Souza Cavalcante
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sílvio Alencar Marques
- Department of Dermatology, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | | | - James Venturini
- Laboratory of Experimental Immunology, Department of Biological Science, Faculty of Science, São Paulo State University – UNESP, São Paulo, Brazil
| | - Tatiane Fernanda Sylvestre
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Anamaria Mello Miranda Paniago
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina – Federal University of Mato Grosso do Sul – UFMS, Brazil
| | | | - Julhiany de Fátima da Silva
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Unit of Experimental Research, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Rosane Christine Hahn
- Laboratory of Investigation and Mycology, Federal University of Mato Grosso, Faculty of Medicine Cuiabá, Mato Grosso, Brazil
| | - Adriele Dandara Levorato
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
6
|
Paracoccidioides brasiliensis induces cytokine secretion in epithelial cells in a protease-activated receptor-dependent (PAR) manner. Med Microbiol Immunol 2016; 206:149-156. [DOI: 10.1007/s00430-016-0490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
7
|
Maza PK, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol 2016; 7:580. [PMID: 27148251 PMCID: PMC4840283 DOI: 10.3389/fmicb.2016.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.
Collapse
Affiliation(s)
- Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|