1
|
Ding JL, Li L, Wei K, Zhang H, Keyhani NO, Feng MG, Ying SH. Alcohol dehydrogenase 1 acts as a scaffold protein in mitophagy essential for fungal pathogen adaptation to hypoxic niches within hosts. Int J Biol Macromol 2025; 295:139651. [PMID: 39793830 DOI: 10.1016/j.ijbiomac.2025.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fungi have evolved diverse physiological adaptations to hypoxic environments. However, the mechanisms mediating such adaptations remain obscure for many filamentous pathogenic fungi. Here, we show that autophagy mediated mitophagy occurs in the insect pathogenic fungus Beauveria bassiana under hypoxic conditions induced by host cellular immune responses. Mitophagy was essential for fungal evasion from insect hemocyte encapsulation, allowing for fungal proliferation and colonization in the host hemocoel. Our data showed that B. bassiana autophagy-related protein 11 (Atg11) interacts with Atg8 as a scaffold mediating mitophagy. The mitochondrial protein Atg43 was demonstrated to act as a receptor for the selective mitophagy, directly interacting with Atg8 for the autophagosomal targeting. Alcohol dehydrogenase BbAdh1, as a novel scaffold protein, participates in mitophagy through interacting with Atg8 and Atg11 under hypoxic stress. BbAdh1 was critical for fungal intracellular redox homeostasis and energy metabolism under hypoxic conditions. These data provide a pathway for mitochondrial degradation via metabolism linked autophagosome- to-vacuole targeting during hypoxic stress. This mitophagy results in depletion of oxidative mitochondrial dependent functions as a cellular adaptation to the low oxygen levels.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
3
|
Naik S, Mohammed A. Consensus Gene Network Analysis Identifies the Key Similarities and Differences in Endothelial and Epithelial Cell Dynamics after Candida albicans Infection. Int J Mol Sci 2023; 24:11748. [PMID: 37511508 PMCID: PMC10380918 DOI: 10.3390/ijms241411748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial and epithelial cells are morphologically different and play a critical role in host defense during Candida albicans infection. Both cells respond to C. albicans infection by activating various signaling pathways and gene expression patterns. Their interactions with these pathogens can have beneficial and detrimental effects, and a better understanding of these interactions can help guide the development of new therapies for C. albicans infection. To identify the differences and similarities between human endothelial and oral epithelial cell transcriptomics during C. albicans infection, we performed consensus WGCNA on 32 RNA-seq samples by relating the consensus modules to endothelial-specific modules and analyzing the genes connected. This analysis resulted in the identification of 14 distinct modules. We demonstrated that the magenta module correlates significantly with C. albicans infection in each dataset. In addition, we found that the blue and cyan modules in the two datasets had opposite correlation coefficients with a C. albicans infection. However, the correlation coefficients and p-values between the two datasets were slightly different. Functional analyses of the hub of genes from endothelial cells elucidated the enrichment in TNF, AGE-RAGE, MAPK, and NF-κB signaling. On the other hand, glycolysis, pyruvate metabolism, amino acid, fructose, mannose, and vitamin B6 metabolism were enriched in epithelial cells. However, mitophagy, necroptosis, apoptotic processes, and hypoxia were enriched in both endothelial and epithelial cells. Protein-protein interaction analysis using STRING and CytoHubba revealed STAT3, SNRPE, BIRC2, and NFKB2 as endothelial hub genes, while RRS1, SURF6, HK2, and LDHA genes were identified in epithelial cells. Understanding these similarities and differences may provide new insights into the pathogenesis of C. albicans infections and the development of new therapeutic targets and interventional strategies.
Collapse
Affiliation(s)
- Surabhi Naik
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Akram Mohammed
- Center for Biomedical Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
4
|
Su H, Yi J, Tsui CK, Li C, Zhu J, Li L, Zhang Q, Zhu Y, Xu J, Zhu M, Han J. HIF1-α upregulation induces proinflammatory factors to boost host killing capacity after Aspergillus fumigatus exposure. Future Microbiol 2023; 18:27-41. [PMID: 36472203 DOI: 10.2217/fmb-2022-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: HIF1-α is an important transcription factor in the regulation of the immune response. The protective function of HIF1-α in the host epithelial immune response to Aspergillus fumigatus requires further clarification. Methods: In this study we demonstrated the effect of upregulation of HIF1-α expression in A549 cells and mouse airway cells exposed to A. fumigatus in vivo. Results: The killing capacity was enhanced by boosting proinflammatory factors both in vitro and in vivo. Moreover, airway inflammation was reduced in the HIF1-α-upregulated mice. Conclusion: We identified a protective role for HIF1-α in anti-A. fumigatus immunity. Modulation of HIF1-α might be a target for the development of aspergillosis therapy.
Collapse
Affiliation(s)
- Huilin Su
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiu Yi
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Clement Km Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, V6T1Z3, Canada.,National Center for Infectious Diseases, Tan Tock Seng hospital, 308442, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center of PLA, Shanghai, 200052, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiande Han
- Department of Dermatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, China
| |
Collapse
|
5
|
Abstract
Bacteria engulfed by phagocytic cells must resist oxidation damage and adapt to cellular hypoxia, but the mechanisms involved in this process are not completely elucidated. Recent work by Kim et al. in the Journal of Biological Chemistry investigated how the intracellular pathogen Salmonella enterica activates gene expression required to counteract oxidative damage. The authors show that this bacterium utilizes host oxidative molecules to activate regulatory proteins that enhance the production of effector molecules, counteracting the host weapon NADPH oxidase and inducing a protective response.
Collapse
|
6
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
7
|
Schatz V, Neubert P, Rieger F, Jantsch J. Hypoxia, Hypoxia-Inducible Factor-1α, and Innate Antileishmanial Immune Responses. Front Immunol 2018. [PMID: 29520262 PMCID: PMC5827161 DOI: 10.3389/fimmu.2018.00216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low oxygen environments and accumulation of hypoxia-inducible factors (HIFs) are features of infected and inflamed tissues. Here, we summarize our current knowledge on oxygen levels found in Leishmania-infected tissues and discuss which mechanisms potentially contribute to local tissue oxygenation in leishmanial lesions. Moreover, we review the role of hypoxia and HIF-1 on innate antileishmanial immune responses.
Collapse
Affiliation(s)
- Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Franz Rieger
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Santos SAD, Andrade DRD. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo 2017; 59:e92. [PMID: 29267600 PMCID: PMC5738998 DOI: 10.1590/s1678-9946201759092] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of this review is to show the significant role of HIF-1alpha in inflammatory and infectious diseases. Hypoxia is a physiological characteristic of a wide range of diseases from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydrolase enzymes, which control the protein stability of hypoxia-inducible factor alpha 1 (HIF-1alpha) transcription factors. When stabilized, HIF-1alpha binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to organize a broad ranging transcriptional program in response to the hypoxic environment. HIF-1alpha also plays a regulatory function in response to a diversity of molecular signals of infection and inflammation even under normoxic conditions. HIF-1alpha is stimulated by pro-inflammatory cytokines, growth factors and a wide range of infections. Its induction is a general element of the host response to infection. In this review, we also discuss recent advances in knowledge on HIF-1alpha and inflammatory responses, as well as its direct influence in infectious diseases caused by bacteria, virus, protozoan parasites and fungi.
Collapse
Affiliation(s)
- Sânia Alves Dos Santos
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Bacteriologia (LIM 54), São Paulo, São Paulo, Brazil
| | - Dahir Ramos de Andrade
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Bacteriologia (LIM 54), São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Walmsley SR, Rupp J. Hypoxia and host pathogen responses. Microbes Infect 2017; 19:143. [PMID: 28115212 DOI: 10.1016/j.micinf.2017.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Sarah R Walmsley
- MRC/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|