1
|
Zhang Y, Wang H, Zhang Y, Zhao P, Li Y. Aerosolization inhalation of non-typeable Haemophilus influenzae outer membrane vesicles contributing to neutrophilic asthma. Front Microbiol 2023; 14:1226633. [PMID: 37564280 PMCID: PMC10411346 DOI: 10.3389/fmicb.2023.1226633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Neutrophilic asthma is poorly responsive to corticosteroids, and the mechanism underlying its pathogenesis remains unclear. Non-typeable Haemophilus influenzae (NTHi) is the most common bacterium found in induced sputum from patients with neutrophilic asthma. NTHi can release outer membrane vesicles (OMVs), which transfer biomolecules to host cells and the external environment. However, the role and mechanisms of NTHi OMVs in the pathogenesis of neutrophilic asthma remain unclear. Methods We conducted assays to investigate whether NTHi OMVs can induce neutrophilic asthma when inhaled. We isolated and purified NTHi OMVs and administered them via a nebulizer to ovalbumin (OVA)-sensitized mice. We collected and sequenced serum, blood, bronchoalveolar lavage fluid, and lung tissue from each group and gathered lung function data. Results Inhaled NTHi OMVs-induced neutrophilic asthma in OVA-sensitized mice. High-throughput sequencing revealed that NTHi OMV inhalation in OVA-sensitized mice significantly enriched inflammatory and immune-related signaling pathways. We found increased transcription and secretion of interleukin (IL)-1β and IL-17, which may contribute to neutrophilic asthma. Furthermore, we discovered that airway epithelium is the first receptor cell of NTHi OMVs and releases IL-1β. These findings suggest that NTHi OMVs could be a potential target for neutrophilic asthma therapy.
Collapse
Affiliation(s)
| | | | | | | | - Yanan Li
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma? Eur Respir Rev 2022; 31:220008. [PMID: 36130784 PMCID: PMC9724834 DOI: 10.1183/16000617.0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex, heterogeneous condition that affects over 350 million people globally. It is characterised by bronchial hyperreactivity and airways inflammation. A subset display marked airway neutrophilia, associated with worse lung function, higher morbidity and poor response to treatment. In these individuals, recent metagenomic studies have identified persistent bacterial infection, particularly with non-encapsulated strains of the Gram-negative bacterium Haemophilus influenzae. Here we review knowledge of non-typeable H. influenzae (NTHi) in the microbiology of asthma, the immune consequences of mucosal NTHi infection, various immune evasion mechanisms, and the clinical implications of NTHi infection for phenotyping and targeted therapies in neutrophilic asthma. Airway neutrophilia is associated with production of neutrophil chemokines and proinflammatory cytokines in the airways, including interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-17A and tumour necrosis factor. NTHi adheres to and invades the lower respiratory tract epithelium, inducing the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes. NTHi reduces expression of tight-junction proteins, impairing epithelial integrity, and can persist intracellularly. NTHi interacts with rhinoviruses synergistically via upregulation of intracellular cell adhesion molecule 1 and promotion of a neutrophilic environment, to which NTHi is adapted. We highlight the clinical relevance of this emerging pathogen and its relevance for the efficacy of long-term macrolide therapy in airways diseases, we identify important unanswered questions and we propose future directions for research.
Collapse
Affiliation(s)
- Mary Ashley Brown
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Maisha Jabeen
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Gurpreet Bharj
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
6
|
Liu J, Ran Z, Wang F, Xin C, Xiong B, Song Z. Role of pulmonary microorganisms in the development of chronic obstructive pulmonary disease. Crit Rev Microbiol 2020; 47:1-12. [PMID: 33040638 DOI: 10.1080/1040841x.2020.1830748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic obstructive respiratory disease characterized by irreversible airway limitation and persistent respiratory symptoms. The main clinical symptoms of COPD are dyspnoea, chronic cough, and sputum. COPD is often accompanied by other respiratory diseases, which can cause worsening of the disease. COPD patients with dyspnoea and aggravation of cough and sputum symptoms represent acute exacerbations of COPD (AECOPD). There is mounting evidence suggesting that dysbiosis of pulmonary microbiota participates in the disease. However, investigations of dysbiosis of pulmonary microbiota and the disease are still in initial phases. To screen, diagnose, and treat this respiratory disease, integrating data from different studies can improve our understanding of the occurrence and development of COPD and AECOPD. In this review, COPD epidemiology and the primary triggering mechanism are explored. Emerging knowledge regarding the association of inflammation, caused by pulmonary microbiome imbalance, and changes in lung microbiome flora species involved in the development of the disease are also highlighted. These data will further our understanding of the pathogenesis of COPD and AECOPD and may yield novel strategies for the use of pulmonary microbiota as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Jiexing Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhuonan Ran
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Fen Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China
| | - Bin Xiong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, PR China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
7
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
8
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Ogawa H, Azuma M, Tsunematsu T, Morimoto Y, Kondo M, Tezuka T, Nishioka Y, Tsuneyama K. Neutrophils induce smooth muscle hyperplasia via neutrophil elastase-induced FGF-2 in a mouse model of asthma with mixed inflammation. Clin Exp Allergy 2018; 48:1715-1725. [PMID: 30171733 DOI: 10.1111/cea.13263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bronchial asthma is traditionally characterized by chronic allergic inflammation, including eosinophilia and elevated Th2 cytokines. Recently, IL-17-derived neutrophil infiltration was shown to correlate with asthma severity and airway remodelling. OBJECTIVE To investigate the role of IL-17-derived neutrophils in airway remodelling in chronic bronchial asthma. METHODS We utilized house dust mite antigen-induced mouse models of asthma. Intranasal sensitization and chronic antigen challenge caused a mixed allergic inflammation that included eosinophils and neutrophils (Mix-in group). We neutralized IL-17 and fibroblast growth factor (FGF-2) and investigated the mechanism of airway remodelling in the Mix-in group. RESULTS The Mix-in group displayed neutrophilic infiltration and high levels of IL-17 in lung tissue. The Mix-in group also exhibited more bronchial smooth muscle hyperplasia. IL-17 neutralization decreased the magnitude of all of these effects in the Mix-in group. Antibody arrays revealed an increase in FGF-2 in the Mix-in Group relative to the Eo-ip group, and FGF-2 elevation was associated with smooth muscle hypertrophy/hyperplasia. High concentrations of neutrophil elastase enhanced E-cadherin/β-catenin signalling in bronchial epithelial cells. Neutrophil elastase inhibitor treatment decreased FGF-2 production and E-cadherin/β-catenin signalling, which inhibited smooth muscle hyperplasia. CONCLUSION The IL-17/neutrophil axis may play an important role in airway remodelling by contributing to smooth muscle hypertrophy/hyperplasia in mixed allergic inflammation and accordingly represents an attractive therapeutic target for severe asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan.,Department of Medical Education, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuuki Morimoto
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Mayo Kondo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Toshifumi Tezuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
10
|
Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving Deadly Lung Infections: Innate Host Tolerance Mechanisms in the Pulmonary System. Front Immunol 2018; 9:1421. [PMID: 29988424 PMCID: PMC6024012 DOI: 10.3389/fimmu.2018.01421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Much research on infectious diseases focuses on clearing the pathogen through the use of antimicrobial drugs, the immune response, or a combination of both. Rapid clearance of pathogens allows for a quick return to a healthy state and increased survival. Pathogen-targeted approaches to combating infection have inherent limitations, including their pathogen-specific nature, the potential for antimicrobial resistance, and poor vaccine efficacy, among others. Another way to survive an infection is to tolerate the alterations to homeostasis that occur during a disease state through a process called host tolerance or resilience, which is independent from pathogen burden. Alterations in homeostasis during infection are numerous and include tissue damage, increased inflammation, metabolic changes, temperature changes, and changes in respiration. Given its importance and sensitivity, the lung is a good system for understanding host tolerance to infectious disease. Pneumonia is the leading cause of death for children under five worldwide. One reason for this is because when the pulmonary system is altered dramatically it greatly impacts the overall health and survival of a patient. Targeting host pathways involved in maintenance of pulmonary host tolerance during infection could provide an alternative therapeutic avenue that may be broadly applicable across a variety of pathologies. In this review, we will summarize recent findings on tolerance to host lung infection. We will focus on the involvement of innate immune responses in tolerance and how an initial viral lung infection may alter tolerance mechanisms in leukocytic, epithelial, and endothelial compartments to a subsequent bacterial infection. By understanding tolerance mechanisms in the lung we can better address treatment options for deadly pulmonary infections.
Collapse
Affiliation(s)
| | | | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|