1
|
Zhang Z, Zhang Y, Meng J, Fan W, Jia J, Chen S, Shi H. Sequence Notes: Characterization of Two Novel HIV-1 Unique Recombinant Forms (CRF01_AE/B) in Hebei Province. AIDS Res Hum Retroviruses 2025; 41:279-284. [PMID: 39874542 DOI: 10.1089/aid.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Many new circulating recombinant forms (CRFs) and unique recombinant forms (URFs) of human immunodeficiency virus type-1 (HIV-1) have been discovered in populations with multiple circulating HIV-1 genotypes. In this study, we report two novel URFs derived from two individuals who were HIV-1 positive in Hebei, China, who were infected through homosexual (BDD142) and heterosexual (BDD154) contact. Phylogenetic and recombinant analyses of the two NFLG revealed that they are second-generation recombinant strains originating from the CRF01_AE cluster 4/B and CRF01_AE cluster 5/B strains. The BDD142 viral genome consists of a subtype B fragment inserted into a CRF01_AE backbone, whereas the BDD154 virus genome consists of two subtype B fragments inserted into a CRF01_AE backbone. Prompt monitoring of molecular epidemiological shifts of HIV-1 within sexually transmitted populations and enhanced behavioral interventions targeting this group are imperative to mitigate the spread of HIV-1 effectively.
Collapse
Affiliation(s)
- Zhen Zhang
- Infection Division, The People's Hospital of Baoding, Baoding, China
| | - Yuchen Zhang
- Infection Division, The People's Hospital of Baoding, Baoding, China
| | - Juan Meng
- Infection Division, The People's Hospital of Baoding, Baoding, China
| | - Weiguang Fan
- Clinical Laboratory, The People's Hospital of Baoding, Baoding, China
| | - Jianru Jia
- Infection Division, The People's Hospital of Baoding, Baoding, China
| | - Sisi Chen
- Clinical Laboratory, The People's Hospital of Baoding, Baoding, China
| | - Haoxi Shi
- Clinical Laboratory, The People's Hospital of Baoding, Baoding, China
| |
Collapse
|
2
|
Li Y, Mo J, Liu J, Liang Y, Deng C, Huang Z, Jiang J, Liu M, Liu X, Shang L, Wang X, Xie X, Wang J. A micro-electroporation/electrophoresis-based vaccine screening system reveals the impact of vaccination orders on cross-protective immunity. iScience 2023; 26:108086. [PMID: 37860767 PMCID: PMC10582514 DOI: 10.1016/j.isci.2023.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The constant emergence of mutated pathogens poses great challenges to the existing vaccine system. A screening system is needed to screen for antigen designs and vaccination strategies capable of inducing cross-protective immunity. Herein, we report a screening system based on DNA vaccines and a micro-electroporation/electrophoresis system (MEES), which greatly improved the efficacy of DNA vaccines, elevating humoral and cellular immune responses by over 400- and 35-fold respectively. Eighteen vaccination strategies were screened simultaneously by sequential immunization with vaccines derived from wildtype (WT) SARS-CoV-2, Delta, or Omicron BA.1 variant. Sequential vaccination of BA.1-WT-Delta vaccines with MEES induced potent neutralizing antibodies against all three viral strains and BA.5 variant, demonstrating that cross-protective immunity against future mutants can be successfully induced by existing strain-derived vaccines when a proper combination and order of sequential vaccination are used. Our screening system could be used for fast-seeking vaccination strategies for emerging pathogens in the future.
Collapse
Affiliation(s)
- Yongyong Li
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, People’s Republic of China
| | - Jing Liu
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Ying Liang
- Department of Nephrology, GuangZhou Eighth People′s Hospital, GuangZhou Medical University, Guangzhou 510060, People’s Republic of China
| | - Caiguanxi Deng
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Zhangping Huang
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Juan Jiang
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Ming Liu
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Xinmin Liu
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Liru Shang
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Xiafeng Wang
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ji Wang
- Division of Pulmonary and Critical Care Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, Peoples Republic of China
| |
Collapse
|
3
|
Xia J, Kuang Y, Liang J, Jones M, Swain SL. Influenza Vaccine-Induced CD4 Effectors Require Antigen Recognition at an Effector Checkpoint to Generate CD4 Lung Memory and Antibody Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2077-2090. [PMID: 32929040 PMCID: PMC8525320 DOI: 10.4049/jimmunol.2000597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Previously, we discovered that influenza-generated CD4 effectors must recognize cognate Ag at a defined effector checkpoint to become memory cells. Ag recognition was also required for efficient protection against lethal influenza infection. To extend these findings, we investigated if vaccine-generated effectors would have the same requirement. We compared live infection with influenza to an inactivated whole influenza vaccine. Live infection provided strong, long-lasting Ag presentation that persisted through the effector phase. It stimulated effector generation, long-lived CD4 memory generation, and robust generation of Ab-producing B cells. In contrast, immunization with an inactivated virus vaccine, even when enhanced by additional Ag-pulsed APC, presented Ag for 3 d or less and generated few CD4 memory cells or long-lived Ab-producing B cells. To test if checkpoint Ag addition would enhance this vaccine response, we immunized mice with inactivated vaccine and injected Ag-pulsed activated APC at the predicted effector checkpoint to provide Ag presentation to the effector CD4 T cells. This enhanced generation of CD4 memory, especially tissue-resident memory in the lung, long-lived bone marrow Ab-secreting cells, and influenza-specific IgG Ab. All responses increased as we increased the density of peptide Ag on the APC to high levels. This suggests that CD4 effectors induced by inactivated vaccine require high levels of cognate Ag recognition at the effector checkpoint to most efficiently become memory cells. Thus, we suggest that nonlive vaccines will need to provide high levels of Ag recognition throughout the effector checkpoint to optimize CD4 memory generation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Yi Kuang
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655,Merck Exploratory Science Center, Cambridge, MA 02141
| | - Jialing Liang
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Michael Jones
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| | - Susan L. Swain
- Department of Pathology, 368 Plantation Ave, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
5
|
Collings CK, Little DW, Schafer SJ, Anderson JN. HIV chromatin is a preferred target for drugs that bind in the DNA minor groove. PLoS One 2019; 14:e0216515. [PMID: 31887110 PMCID: PMC6936835 DOI: 10.1371/journal.pone.0216515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The HIV genome is rich in A but not G or U and deficient in C. This nucleotide bias controls HIV phenotype by determining the highly unusual composition of all major HIV proteins. The bias is also responsible for the high frequency of narrow DNA minor groove sites in the double-stranded HIV genome as compared to cellular protein coding sequences and the bulk of the human genome. Since drugs that bind in the DNA minor groove disrupt nucleosomes on sequences that contain closely spaced oligo-A tracts which are prevalent in HIV DNA because of its bias, it was of interest to determine if these drugs exert this selective inhibitory effect on HIV chromatin. To test this possibility, nucleosomes were reconstituted onto five double-stranded DNA fragments from the HIV-1 pol gene in the presence and in the absence of several minor groove binding drugs (MGBDs). The results demonstrated that the MGBDs inhibited the assembly of nucleosomes onto all of the HIV-1 segments in a manner that was proportional to the A-bias, but had no detectable effect on the formation of nucleosomes on control cloned fragments or genomic DNA from chicken and human. Nucleosomes preassembled onto HIV DNA were also preferentially destabilized by the drugs as evidenced by enhanced nuclease accessibility in physiological ionic strength and by the preferential loss of the histone octamer in hyper-physiological salt solutions. The drugs also selectively disrupted HIV-containing nucleosomes in yeast as revealed by enhanced nuclease accessibility of the in vivo assembled HIV chromatin and reductions in superhelical densities of plasmid chromatin containing HIV sequences. A comparison of these results to the density of A-tracts in the HIV genome indicates that a large fraction of the nucleosomes that make up HIV chromatin should be preferred in vitro targets for the MGBDs. These results show that the MGBDs preferentially disrupt HIV-1 chromatin in vitro and in vivo and raise the possibility that non-toxic derivatives of certain MGBDs might serve as a novel class of anti-HIV agents.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.,Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Donald W Little
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Samuel J Schafer
- Department of Reproductive and Developmental Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John N Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
6
|
Abstract
The journal Microbes and Infection is celebrating its vigintennial anniversary and has reunited for this occasion two dozen reviews illustrating achievements of the past as well as future challenges in the field of infectious diseases. From top-notch vaccine development strategies, to high-throughput powered analysis of complex host-pathogen interactions, to innovative therapeutic designs, this issue covers the entire spectrum of pathogens and areas of their confrontation with the host.
Collapse
Affiliation(s)
- Sophia J Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Copenhagen, Denmark.
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, USA
| |
Collapse
|