1
|
Jha MK, Chandel HS, Pandey SP, Sarode A, Bodhale N, Bhattacharya-Majumdar S, Majumdar S, Saha B. Myotubularin-related protein-6 silencing protects mice from Leishmania donovani infection. Int Immunopharmacol 2024; 129:111589. [PMID: 38295542 DOI: 10.1016/j.intimp.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The protozoan parasite Leishmania donovani resides within mammalian macrophages and alters its antigen-presenting functions to negatively regulate host-protective T cell responses. This negative regulation of human T cell responses in vitro is attributed to myotubularin-related protein-6 (MTMR6), an ion channel-associated phosphatase. As mouse and human MTMR6 share homology, we studied whether MTMR6 silencing by lentivirally expressed MTMR6shRNA (Lv-MTMR6shRNA) reduced Leishmania growth in macrophages and whether MTMR6 silencing in Leishmania-susceptible BALB/c mice reduced the infection and reinstated host-protective T cell functions. MTMR6 silencing reduced amastigote count and IL-10 production, increased IL-12 expression and, induced IFN-γ-secreting T cells with anti-leishmanial activity in macrophage-T cell co-cultures. Lv-MTMR6shRNA reduced the infection, accompanied by increased IFN-γ expression, in susceptible BALB/c mice. Delays in Lv-MTMR6shRNA treatment by 7 days post-infection significantly reduced the infection suggesting MTMR6 as a plausible therapeutic target. Priming of BALB/c mice with avirulent parasites and Lv-MTMR6shRNA reduced parasite burden in challenge infection. These results indicate that MTMR6 is the first receptor-regulated ion channel-associated phosphatase regulating anti-leishmanial immune responses.
Collapse
Affiliation(s)
- Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, CIT Scheme VII-M, Kolkata 700054, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
2
|
Parveen S, Majumder S, Bodhale N, Biswal NR, Pandey SP, Dutta A, Patra P, Bhattacharya-Majumdar S, Pal C, Majumdar S, Saha B. Myotubularin-related protein 6 is an ion channel-associated pro-leishmanial phosphatase. Int Immunopharmacol 2024; 129:111644. [PMID: 38330797 DOI: 10.1016/j.intimp.2024.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Residing obligatorily as amastigotes within the mammalian macrophages, the parasite Leishmania donovani inflicts the potentially fatal, globally re-emerging disease visceral leishmaniasis (VL) by altering intracellular signaling through kinases and phosphatases. Because the phosphatases that modulate the VL outcome in humans remained unknown, we screened a human phosphatase siRNA-library for anti-leishmanial functions in THP-1, a human macrophage-like cell line. Of the 251 phosphatases, the screen identified the Ca++-activated K+-channel-associated phosphatase myotubularin-related protein-6 (MTMR6) as the only phosphatase whose silencing reduced parasite load and IL-10 production in human macrophages. Virulent, but not avirulent, L. donovani infection increased MTMR6 expression in macrophages. As virulent L. donovani parasites expressed higher lipophosphoglycan, a TLR2-ligand, we tested the effect of TLR2 stimulation or blockade on MTMR6 expression. TLR1/TLR2-ligand Pam3CSK4 enhanced, but TLR2 blockade reduced, MTMR6 expression. L. donovani infection of macrophages ex vivo increased, but miltefosine treatment reduced, MTMR6 expression. Corroboratively, compared to endemic controls, untreated VL patients had higher, but miltefosine-treated VL patients had reduced, MTMR6 expression. The phosphatase siRNA-library screening thus identified MTMR6 as the first TLR2-modulated ion channel-associated phosphatase with significant implications in VL patients and anti-leishmanial functions.
Collapse
Affiliation(s)
- Shabina Parveen
- Department of Molecular Medicine, Bose Institute, CIT Scheme VII-M, Kolkata 700054. India
| | - Saikat Majumder
- Department of Molecular Medicine, Bose Institute, CIT Scheme VII-M, Kolkata 700054. India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411 007. India
| | - Nihar Ranjan Biswal
- Department of Molecular Medicine, Bose Institute, CIT Scheme VII-M, Kolkata 700054. India
| | | | - Aritri Dutta
- Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Pradyumna Patra
- Canning Sub-divisional Hospital, Canning, West Bengal, India
| | | | - Chiranjib Pal
- Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, CIT Scheme VII-M, Kolkata 700054. India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411 007. India.
| |
Collapse
|
3
|
Wójcik M, Zmarzły N, Derkacz A, Kulpok-Bagiński T, Blek N, Grabarek BO. Gene expression profile of mitogen-activated kinases and microRNAs controlling their expression in HaCaT cell culture treated with lipopolysaccharide A and cyclosporine A. Cell Cycle 2024; 23:279-293. [PMID: 38445655 PMCID: PMC11057563 DOI: 10.1080/15384101.2024.2320508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.
Collapse
Affiliation(s)
- Michał Wójcik
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Nikola Zmarzły
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | - Alicja Derkacz
- Collegium Medicum, WSB University, Dabrowa Gornicza, Poland
| | | | - Natasza Blek
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, Warszawa, Poland
| | | |
Collapse
|
4
|
Song HY, Deng ML, Yang JF, Ma J, Shu FF, Cheng WJ, Zhu XQ, Zou FC, He JJ. Transcriptomic, 16S ribosomal ribonucleic acid and network pharmacology analyses shed light on the anticoccidial mechanism of green tea polyphenols against Eimeria tenella infection in Wuliangshan black-boned chickens. Parasit Vectors 2023; 16:330. [PMID: 37726789 PMCID: PMC10510215 DOI: 10.1186/s13071-023-05922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Eimeria tenella is an obligate intracellular parasitic protozoan that invades the chicken cecum and causes coccidiosis, which induces acute lesions and weight loss. Elucidating the anticoccidial mechanism of action of green tea polyphenols could aid the development of anticoccidial drugs and resolve the problem of drug resistance in E. tenella. METHODS We constructed a model of E. tenella infection in Wuliangshan black-boned chickens, an indigenous breed of Yunnan Province, China, to study the efficacy of green tea polyphenols against the infection. Alterations in gene expression and in the microbial flora in the cecum were analyzed by ribonucleic acid (RNA) sequencing and 16S ribosomal RNA (rRNA) sequencing. Quantitative real-time polymerase chain reaction was used to verify the host gene expression data obtained by RNA sequencing. Network pharmacology and molecular docking were used to clarify the interactions between the component green tea polyphenols and the targeted proteins; potential anticoccidial herbs were also analyzed. RESULTS Treatment with the green tea polyphenols led to a reduction in the lesion score and weight loss of the chickens induced by E. tenella infection. The expression of matrix metalloproteinase 7 (MMP7), MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2 was significantly altered in the E. tenella infection plus green tea polyphenol-treated group and in the E. tenella infection group compared with the control group; these genes were also predicted targets of tea polyphenols. Furthermore, the tea polyphenol (-)-epigallocatechin gallate acted on most of the targets, and the molecular docking analysis showed that it has good affinity with interferon induced with helicase C domain 1 protein. 16S ribosomal RNA sequencing showed that the green tea polyphenols had a regulatory effect on changes in the fecal microbiota induced by E. tenella infection. In total, 171 herbs were predicted to act on two or three targets in MMP7, MMP1, nitric oxide synthase 2 and ephrin type-A receptor 2. CONCLUSIONS Green tea polyphenols can directly or indirectly regulate host gene expression and alter the growth of microbiota. The results presented here shed light on the mechanism of action of green tea polyphenols against E. tenella infection in chickens, and have implications for the development of novel anticoccidial products.
Collapse
Affiliation(s)
- Hai-Yang Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jun Ma
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Wen-Jie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Chen J, Zheng J. The roles of COX-2 in protozoan infection. Front Immunol 2023; 14:955616. [PMID: 36875123 PMCID: PMC9978824 DOI: 10.3389/fimmu.2023.955616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Protozoan diseases cause great harm in animal husbandry and require human-provided medical treatment. Protozoan infection can induce changes in cyclooxygenase-2 (COX-2) expression. The role played by COX-2 in the response to protozoan infection is complex. COX-2 induces and regulates inflammation by promoting the synthesis of different prostaglandins (PGs), which exhibit a variety of biological activities and participate in pathophysiological processes in the body in a variety of ways. This review explains the roles played by COX-2 in protozoan infection and analyzes the effects of COX-2-related drugs in protozoan diseases.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhao X, Chong Z, Chen Y, Zheng XL, Wang QF, Li Y. Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: A perspective review. J Biol Chem 2022; 298:102517. [PMID: 36152748 PMCID: PMC9579037 DOI: 10.1016/j.jbc.2022.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022] Open
Abstract
Megakaryocytes (Mks) in bone marrow are heterogeneous in terms of polyploidy. They not only produce platelets but also support the self-renewal of hematopoietic stem cells and regulate immune responses. Yet, how the diverse functions are generated from the heterogeneous Mks is not clear at the molecular level. Advances in single-cell RNA seq analysis from several studies have revealed that bone marrow Mks are heterogeneous and can be clustered into 3 to 4 subpopulations: a subgroup that is adjacent to the hematopoietic stem cells, a subgroup expressing genes for platelet biogenesis, and a subgroup expressing immune-responsive genes, the so-called immune Mks that exist in both humans and mice. Immune Mks are predominantly in the low-polyploid (≤8 N nuclei) fraction and also exist in the lung. Protein arginine methyltransferase 1 (PRMT1) expression is positively correlated with the expression of genes involved in immune response pathways and is highly expressed in immune Mks. In addition, we reported that PRMT1 promotes the generation of low-polyploid Mks. From this perspective, we highlighted the data suggesting that PRMT1 is essential for the generation of immune Mks via its substrates RUNX1, RBM15, and DUSP4 that we reported previously. Thus, we suggest that protein arginine methylation may play a critical role in the generation of proinflammatory platelet progeny from immune Mks, which may affect many immune, thrombotic, and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Zechen Chong
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Qian-Fei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yueying Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| |
Collapse
|
7
|
Regulatory role of Transcription factor-EB (TFEB) in parasite control through alteration of antigen presentation in visceral leishmaniasis. Exp Parasitol 2022; 239:108286. [PMID: 35660529 DOI: 10.1016/j.exppara.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Leishmania donovani, an obligate intracellular parasite, the causative agent of visceral leishmaniasis is known to subvert the host immune system for its own survival. Although the precise mechanism is still unknown, emerging evidences indicate that L. donovani efficiently suppress MHC I mediated antigen presentation, rendering inadequate CD8+T cell activation and weakening host defense against parasite. The role of transcription factor EB (TFEB) was recognized in modulating antigen presentation besides its role in lysosomal biogenesis and function. Here, we investigated the regulatory role of TFEB in the modulation of presentation of Leishmania antigen in host tissue. Our results showed an increased expression of TFEB after Leishmania infection both in vitro and in vivo and there was a decrease in the expression of Th-1 cytokine IFNγ along with MHC class I and CD8+T cells indicating attenuation of cell mediated immunity and possibly MHC I restricted antigen presentation. Silencing of TFEB resulted in increased expression of IFNγ and MHC I along with increased CD8+T cells population without any significant change in CD4+T cell number. We also observed a decreased parasite burden in TFEB silenced condition which indicates enhanced parasite clearance by alteration of immunological response possibly through induction of presentation of Leishmania antigen through MHC I. The present study explains the role of TFEB silencing in parasite clearance through regulating the antigen presentation of Leishmania antigen thereby promises to formulate a potential therapeutic strategy against visceral leishmaniasis.
Collapse
|
8
|
Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacol Res 2022; 177:106117. [DOI: 10.1016/j.phrs.2022.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
|
9
|
Jha MK, Sarode AY, Bodhale N, Mukherjee D, Pandey SP, Srivastava N, Rub A, Silvestre R, Sarkar A, Saha B. Development and Characterization of an Avirulent Leishmania major Strain. THE JOURNAL OF IMMUNOLOGY 2020; 204:2734-2753. [PMID: 32245818 DOI: 10.4049/jimmunol.1901362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Leishmania major causes cutaneous leishmaniasis. An antileishmanial vaccine for humans is unavailable. In this study, we report development of two attenuated L. major strains-5ASKH-HP and LV39-HP-by continuous culture (high passage) of the corresponding virulent strains (low passage). Both avirulent strains showed similar changes in proteome profiles when analyzed by surface-enhanced laser desorption ionization mass spectrometry. Liquid chromatography-mass spectrometry and microarray characterization of 5ASKH strains revealed substantially altered gene and protein expression profiles, respectively. Both virulent and avirulent L. major strains grew comparably in culture, but the avirulent strain survived significantly less in BALB/c-derived peritoneal macrophages. Both attenuated strains failed to infect BALB/c mice and elicited IFN-γ, but not IL-4 and IL-10, responses. 5ASKH-HP parasites failed to induce significant infection even in severely immunocompromised- SCID or inducible NO synthase-, CD40-, or IL-12-deficient mice, indicating attenuation. The avirulent strain induced less IL-10, but higher IL-12, in macrophages. The avirulent strain failed to reduce CD40 relocation to the detergent-resistant membrane domain and to inhibit CD40-induced phosphorylation of the kinases Lyn and protein kinase C-β and MAPKs MKK-3/6 and p38MAPK or to upregulate MEK-1/2 and ERK-1/2 in BALB/c-derived peritoneal macrophages. The virulent and the avirulent strains reciprocally modulated CD40-induced Ras-mediated signaling through PI-3K and Raf-1. Avirulent 5ASKH-primed BALB/c mice were protected against virulent L. major challenge infection. The loss of virulence accompanied by substantially altered proteome profiles and the elicitation of host-protective immune responses indicate plausibly irreversible attenuation of the L. major strain and its potential use as a vaccine strain.
Collapse
Affiliation(s)
- Mukesh Kumar Jha
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Aditya Y Sarode
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Neelam Bodhale
- Jagadis Bose National Science Talent Search, Kolkata, West Bengal 700107, India
| | - Debasri Mukherjee
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Surya Prakash Pandey
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Neetu Srivastava
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Abdur Rub
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; and
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; .,Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
10
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|