1
|
Wei Y, Sun K, Han X, Sun Y, Zhang J, Wang Y, Yin Q, Yang T, Yuan K, Li M, Zhao G. Application of Humanized MHC Transgenic Mice in the Screening of HLA-Restricted T Cell Epitopes for Influenza Vaccines. Vaccines (Basel) 2025; 13:331. [PMID: 40266241 PMCID: PMC11945804 DOI: 10.3390/vaccines13030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Annual influenza epidemics pose a significant burden on the global healthcare system. The currently available vaccines mainly induce the production of neutralizing antibodies against hemagglutinin and neuraminidase, which are prone to antigenic variation, and this can reduce vaccine efficacy. Vaccines designed to target T cell epitopes can be potentially valuable. Considering the difficulties in obtaining clinical samples and the unique advantages of mice in disease-related research, a mouse model that can simulate human immune responses can be a superior alternative to peripheral blood mononuclear cells for epitope screening. METHODS The T cell epitopes of the A/California/07/2009 (H1N1) virus were predicted and utilized to evaluate the cellular immune responses of HLA-A2/DR1 and HLA-A11/DR1 transgenic mice during epitope screening. The selected peptides were used to immunize these two groups of transgenic mice, followed by a viral challenge to assess their protective efficacy. RESULTS The epitopes that were predicted and screened could stimulate cellular immune responses in HLA-A2/DR1 transgenic mice, HLA-A11/DR1 transgenic mice, and C57BL/6 mice. Moreover, the transgenic mice exhibited stronger ability to produce IFN-γ than that of the wild-type mice. Upon immunization and subjecting to viral challenge, the selected peptides exhibited protective effects against the influenza virus. CONCLUSIONS The HLA-A2/DR1 and HLA-A11/DR1 transgenic mouse models can be used for the direct screening and validation of influenza virus T cell epitopes, which is crucial for designing T cell epitope vaccines against influenza viruses. Further, this method can be applied in epitope screening and vaccine designing before the spread of other emerging and sudden infectious diseases, thereby supporting epidemic control.
Collapse
Affiliation(s)
- Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Keyu Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Yali Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Jiejie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Tiantian Yang
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Kai Yuan
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Ni C, Han Y, Wang Y, Ma T, Sha D, Xu Y, Cao W, Gao S. Human HLA prolongs the host inflammatory response in Streptococcus suis serotype 2 infection compared to mouse H2 molecules. Front Cell Infect Microbiol 2023; 13:1285055. [PMID: 38035330 PMCID: PMC10682707 DOI: 10.3389/fcimb.2023.1285055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Streptococcus suis (S. suis) is widely acknowledged as a significant zoonotic pathogen in Southeast Asia and China, which has led to a substantial number of fatalities in both swine and humans. Despite the prevalent use of mice as the primary animal model to study S. suis pathogenesis, the substantial differences in the major histocompatibility complex (MHC) between humans and mice underscore the ongoing exploration for a more suitable and effective animal model. In this study, humanized transgenic HLA-A11/DR1 genotypes mice were used to evaluate the differences between humanized HLA and murine H2 in S. suis infection. Following intravenous administration of S. suis suspensions, we investigated bacterial load, cytokine profiles, pathological alterations, and immune cell recruitment in both Wild-type (WT) and humanized mice across different post-infection time points. Relative to WT mice, humanized mice exhibited heightened pro-inflammatory cytokines, exacerbated tissue damage, increased granulocyte recruitment with impaired resolution, notably more pronounced during the late infection stage. Additionally, our examination of bacterial clearance rates suggests that HLA-A11/DR1 primarily influences cell recruitment and mitochondrial reactive oxygen species (ROS) production, which affects the bacterial killing capacity of macrophages in the late stage of infection. The reduced IL-10 production and lower levels of regulatory T cells in humanized mice could underlie their compromised resolution ability. Intervention with IL-10 promotes bacterial clearance and inflammatory regression in the late stages of infection in transgenic mice. Our findings underscore the heightened sensitivity of HLA-A11/DR1 mice with impaired resolution to S. suis infection, effectively mirroring the immune response seen in humans during infection. The humanized HLA-A11/DR1 mice could serve as an optimal animal model for investigating the pathogenic and therapeutic mechanisms associated with sepsis and other infectious diseases.
Collapse
Affiliation(s)
- Chengpei Ni
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yi Han
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yajing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ting Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Sha
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yanan Xu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenting Cao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
3
|
Hu YL, Zhang LQ, Liu XQ, Ye W, Zhao YX, Zhang L, Qiang ZX, Zhang LX, Lei YF, Jiang DB, Cheng LF, Zhang FL. Construction and evaluation of DNA vaccine encoding Crimean Congo hemorrhagic fever virus nucleocapsid protein, glycoprotein N-terminal and C-terminal fused with LAMP1. Front Cell Infect Microbiol 2023; 13:1121163. [PMID: 37026060 PMCID: PMC10072157 DOI: 10.3389/fcimb.2023.1121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hemorrhagic fever in humans and is mainly transmitted by ticks. There is no effective vaccine for Crimean-Congo hemorrhagic fever (CCHF) at present. We developed three DNA vaccines encoding CCHFV nucleocapsid protein (NP), glycoprotein N-terminal (Gn) and C-terminal (Gc) fused with lysosome-associated membrane protein 1 (LAMP1) and assessed their immunogenicity and protective efficacy in a human MHC (HLA-A11/DR1) transgenic mouse model. The mice that were vaccinated three times with pVAX-LAMP1-CCHFV-NP induced balanced Th1 and Th2 responses and could most effectively protect mice from CCHFV transcription and entry-competent virus-like particles (tecVLPs) infection. The mice vaccinated with pVAX-LAMP1-CCHFV-Gc mainly elicited specific anti-Gc and neutralizing antibodies and provided a certain protection from CCHFV tecVLPs infection, but the protective efficacy was less than that of pVAX-LAMP1-CCHFV-NP. The mice vaccinated with pVAX-LAMP1-CCHFV-Gn only elicited specific anti-Gn antibodies and could not provide sufficient protection from CCHFV tecVLPs infection. These results suggest that pVAX-LAMP1-CCHFV-NP would be a potential and powerful candidate vaccine for CCHFV.
Collapse
Affiliation(s)
- Yong-Liang Hu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- Department of Dermatology, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lian-Qing Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-Qian Liu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei Ye
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yue-Xi Zhao
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Zun-Xian Qiang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Lin-Xuan Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Dong-Bo Jiang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Lin-Feng Cheng
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Fang-Lin Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| |
Collapse
|
4
|
Liu Y, Sun B, Wang J, Sun H, Lu Z, Chen L, Lan M, Xu J, Pan J, Shi J, Sun Y, Zhang X, Wang J, Jiang D, Yang K. In silico analyses and experimental validation of the MHC class-I restricted epitopes of Ebolavirus GP. Int Immunol 2022; 34:313-325. [PMID: 35192720 DOI: 10.1093/intimm/dxac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ebolavirus (EBOV) causes an extremely high mortality and prevalence disease called Ebola virus disease (EVD). There is only one glycoprotein (GP) on the virus particle surface, which mediates entry into the host cell. MHC class-I restricted CD8 + T cell responses are important antiviral immune responses. Therefore, it is of great importance to understand EBOV GP-specific MHC class-I restricted epitopes within immunogenicity. In this study, computational approaches were employed to predict the dominant MHC class-I molecule epitopes of EBOV GP for mouse H2 and major alleles of HLA class-I supertypes. Our results yielded 42 dominant epitopes in H2 haplotypes and 301 dominant epitopes in HLA class-I haplotypes. After validation by ELISpot assay, in-depth analyses to ascertain their nature of conservation, immunogenicity, and docking with the corresponding MHC class-I molecules were undertaken. Our study predicted MHC class-I restricted epitopes that may aid the advancement of anti-EBOV immune responses. And the integrated strategy of epitope prediction, validation, and comparative analyses were postulated, promising for epitope-based immunotherapy development and application to viral epidemics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, P.R. China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiawei Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Tangshan Sannvhe Airport, Tangshan, Hebei, P.R. China
| | - Zhenhua Lu
- Department of Epidemiology, Public Health School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingqi Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
5
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020; 21:E9289. [PMID: 33291453 PMCID: PMC7730764 DOI: 10.3390/ijms21239289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Medical research is changing into direction of precision therapy, thus, sophisticated preclinical models are urgently needed. In human pathogenic virus research, the major technical hurdle is not only to translate discoveries from animals to treatments of humans, but also to overcome the problem of interspecies differences with regard to productive infections and comparable disease development. Transgenic mice provide a basis for research of disease pathogenesis after infection with human-specific viruses. Today, humanized mice can be found at the very heart of this forefront of medical research allowing for recapitulation of disease pathogenesis and drug mechanisms in humans. This review discusses progress in the development and use of transgenic mice for the study of virus-induced human diseases towards identification of new drug innovations to treat and control human pathogenic infectious diseases.
Collapse
Affiliation(s)
| | | | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, 48149 Muenster, Germany; (D.M.); (S.L.)
| |
Collapse
|
7
|
|