1
|
Topalović IA, Marković OS, Pešić MP, Kathawala MH, Kuentz M, Avdeef A, Serajuddin ATM, Verbić TŽ. Effects of Different Weak Small Organic Acids on Clofazimine Solubility in Aqueous Media. Pharmaceutics 2024; 16:1545. [PMID: 39771524 PMCID: PMC11728605 DOI: 10.3390/pharmaceutics16121545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.01 μg/mL, and solubilities of its different salt forms in simulated gastric and intestinal fluids are <10 µg/mL. These are extremely low solubilities for the dissolution of a drug administered orally at 100-200 mg doses. METHODS In the present investigation, seven weak organic acids (adipic, citric, glutaric, maleic, malic, succinic, and tartaric) were tested by determining the aqueous solubility of CFZ as the function of acid concentration to investigate whether any of the acids would lead to the supersolubilization of CFZ. RESULTS There were only minimal increases in solubilities when concentrations of acids in water were increased up to 2.4 M. The solubilities, however, increased to 0.32, 1.23, and 10.68 mg/mL, respectively, in 5 M solutions of tartaric, malic, and glutaric acids after equilibration for 24 h at 25 °C. Crystalline solids were formed after the equilibration of CFZ with all acids. Apparently, salts or cocrystals were formed with all acids, except for glutaric acid, as their melting endotherms in DSC scans were in the range of 207.6 to 248.5 °C, which were close to that of CFZ itself (224.8 °C). In contrast, the adduct formed with glutaric acid melted at the low temperature of 77 °C, and no other peak was observed at a higher temperature, indicating that the material converted to an amorphous state. CONCLUSIONS The increase in CFZ solubility to >10 mg/mL in the presence of 5 M glutaric acid could be called supersolubilization when compared to the intrinsic solubility of the basic drug. Such an increase in CFZ solubility and the conversion of the glutarate adduct to an amorphous state are being exploited to develop rapidly dissolving dosage forms.
Collapse
Affiliation(s)
- Igor A. Topalović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (I.A.T.); (M.P.P.)
| | - Olivera S. Marković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Miloš P. Pešić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (I.A.T.); (M.P.P.)
| | - Mufaddal H. Kathawala
- College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA;
| | - Martin Kuentz
- School of Life Sciences FHNW, Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstraße, 30, 4132 Müttenz, Switzerland;
| | | | - Abu T. M. Serajuddin
- College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA;
| | - Tatjana Ž. Verbić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (I.A.T.); (M.P.P.)
| |
Collapse
|
2
|
Islam MM, Alam MS, Liu Z, Khatun MS, Yusuf B, Hameed HMA, Tian X, Chhotaray C, Basnet R, Abraha H, Zhang X, Khan SA, Fang C, Li C, Hasan S, Tan S, Zhong N, Hu J, Zhang T. Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Front Med (Lausanne) 2024; 10:1304857. [PMID: 38274444 PMCID: PMC10809401 DOI: 10.3389/fmed.2023.1304857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024] Open
Abstract
Clofazimine (CFZ) and bedaquiline (BDQ) are currently used for the treatment of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains. In recent years, adding CFZ and BDQ to tuberculosis (TB) drug regimens against MDR Mtb strains has significantly improved treatment results, but these improvements are threatened by the emergence of MDR and extensively drug-resistant (XDR) Mtb strains. Recently, CFZ and BDQ have attracted much attention for their strong clinical efficacy, although very little is known about the mechanisms of action, drug susceptibility test (DST), resistance mechanisms, cross-resistance, and pharmacokinetics of these two drugs. In this current review, we provide recent updates on the mechanisms of action, DST, associated mutations with individual resistance and cross-resistance, clinical efficacy, and pharmacokinetics of CFZ and BDQ against Mtb strains. Presently, known mechanisms of resistance for CFZ and/or BDQ include mutations within the Rv0678, pepQ, Rv1979c, and atpE genes. The cross-resistance between CFZ and BDQ may reduce available MDR-/XDR-TB treatment options. The use of CFZ and BDQ for treatment in the setting of limited DST could allow further spread of drug resistance. The DST and resistance knowledge are urgently needed where CFZ and BDQ resistance do emerge. Therefore, an in-depth understanding of clinical efficacy, DST, cross-resistance, and pharmacokinetics for CFZ and BDQ against Mtb can provide new ideas for improving treatment outcomes, reducing mortality, preventing drug resistance, and TB transmission. Along with this, it will also help to develop rapid molecular diagnostic tools as well as novel therapeutic drugs for TB.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chiranjibi Chhotaray
- Department of Medicine, Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haftay Abraha
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot, Azad Kashmir, Pakistan
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shouyong Tan
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinxing Hu
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Tang S, Sun LJ, Pan AQ, Huang J, Wang H, Lin YW. Application of engineered myoglobins for biosynthesis of clofazimine by integration with chemical synthesis. Org Biomol Chem 2023; 21:9603-9609. [PMID: 38014756 DOI: 10.1039/d3ob01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significant efforts have been made in the design of artificial metalloenzymes. Myoglobin (Mb), an O2 carrier, has been engineered to exhibit different functions. Herein, we applied a series of engineered Mb mutants with peroxidase activity for biosynthesis of clofazimine (CFZ), a potential drug with a broad-spectrum antiviral activity, by integration with chemical synthesis. Two of those mutants, F43Y Mb and F43Y/T67R Mb, have been shown to efficiently catalyze the oxidative coupling of 2-N-(4-chlorophenyl) benzene-1,2-diamine (N-4-CPBDA) in the presence of H2O2, with 97% yields. The overall catalytic efficiency (kcat/Km) is 46-fold and 82-fold higher than that of WT Mb, respectively. By further combination of this reaction with chemical synthesis, the production of CFZ was accomplished with an isolated yield of 72%. These results showed that engineered Mbs containing the Tyr-heme cross-link (F43Y Mb and F43Y/T67R Mb) exhibit enhanced activity in the oxidative coupling reaction. This study also indicates that the combination of biocatalysis and chemical synthesis avoids the need for the separation of intermediate products, which offers a convenient approach for the total synthesis of the biological compound CFZ.
Collapse
Affiliation(s)
- Shuai Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Sun
- Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Ai-Qun Pan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Huamin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Hengyang Medical College, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
van Staden D, Haynes RK, Viljoen JM. The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success. Pharmaceuticals (Basel) 2023; 16:1348. [PMID: 37895819 PMCID: PMC10610238 DOI: 10.3390/ph16101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| | - Richard K. Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
- Rural Health Research Institute, Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia
| | - Joe M. Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| |
Collapse
|
5
|
Stadler JAM, Maartens G, Meintjes G, Wasserman S. Clofazimine for the treatment of tuberculosis. Front Pharmacol 2023; 14:1100488. [PMID: 36817137 PMCID: PMC9932205 DOI: 10.3389/fphar.2023.1100488] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Shorter (6-9 months), fully oral regimens containing new and repurposed drugs are now the first-choice option for the treatment of drug-resistant tuberculosis (DR-TB). Clofazimine, long used in the treatment of leprosy, is one such repurposed drug that has become a cornerstone of DR-TB treatment and ongoing trials are exploring novel, shorter clofazimine-containing regimens for drug-resistant as well as drug-susceptible tuberculosis. Clofazimine's repurposing was informed by evidence of potent activity against DR-TB strains in vitro and in mice and a treatment-shortening effect in DR-TB patients as part of a multidrug regimen. Clofazimine entered clinical use in the 1950s without the rigorous safety and pharmacokinetic evaluation which is part of modern drug development and current dosing is not evidence-based. Recent studies have begun to characterize clofazimine's exposure-response relationship for safety and efficacy in populations with TB. Despite being better tolerated than some other second-line TB drugs, the extent and impact of adverse effects including skin discolouration and cardiotoxicity are not well understood and together with emergent resistance, may undermine clofazimine use in DR-TB programmes. Furthermore, clofazimine's precise mechanism of action is not well established, as is the genetic basis of clofazimine resistance. In this narrative review, we present an overview of the evidence base underpinning the use and limitations of clofazimine as an antituberculosis drug and discuss advances in the understanding of clofazimine pharmacokinetics, toxicity, and resistance. The unusual pharmacokinetic properties of clofazimine and how these relate to its putative mechanism of action, antituberculosis activity, dosing considerations and adverse effects are highlighted. Finally, we discuss the development of novel riminophenazine analogues as antituberculosis drugs.
Collapse
Affiliation(s)
- Jacob A. M. Stadler
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,*Correspondence: Jacob A. M. Stadler,
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|