1
|
Zeng Z, Li M, Zhu S, Zhang K, Wu Y, Zheng M, Cao Y, Huang Z, Liao Q, Zhang L. Strain-level genomic analysis of serotype, genotype and virulence gene composition of group B streptococcus. Front Cell Infect Microbiol 2024; 14:1396762. [PMID: 39569407 PMCID: PMC11576427 DOI: 10.3389/fcimb.2024.1396762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction GBS (group B streptococcus) is an opportunistic pathogen that can colonize healthy individuals but presents significant challenges in clinical obstetrics and gynecology, as it can cause miscarriage, preterm birth, and invasive infections in newborns. To develop specific and personalized preventative strategies, a better understanding of the epidemiological characteristics and pathogenic features of GBS is essential. Methods We conducted a comprehensive strain-level genomic analysis of GBS, examining serotype and genotype distributions, as well as the composition and correlations of virulence genes using the blastn-short mode of the BLAST program(v2.10.0+), mlstsoftware (https://github.com/tseemann/mlst), Snippy (v4.6.0), FastTree (v2.1.11) and iTOL. The coding sequence region of virulence factors was annotated by Prodigal (v2.6.3) and Glimmer(v3.02b). We further identified host protein interacting with Srr2 by mass spectrometry analysis. Results While certain genotypes showed strong serotype consistency, there was no significant association between overall serotypes and genotypes. However, the composition of virulence genes was more closely related to the phylogeny of GBS, among which simultaneous presence of Srr2 and HygA exhibit significant association with hypervirulence. Tubulin emerged as the most distinct and abundant hit. The specific interaction of Tubulin with Srr2-BR, rather than Srr1-BR, was further confirmed by immunoblotting. Discussion Considering the impact of cytoskeleton rearrangement on GBS pathogenesis, this observation offers a plausible explanation for the hypervirulence triggered by Srr2. Collectively, our findings indicate that in the future clinical practice, virulence gene detection should be given more attention to achieve precise GBS surveillance and disease prevention.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Simin Zhu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ke Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yifan Wu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minzi Zheng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenyu Huang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Banno H, Kimura K, Tanaka Y, Sekizuka T, Kuroda M, Jin W, Wachino JI, Yamada K, Shibayama K, Arakawa Y. Analysis of multidrug resistant group B streptococci with reduced penicillin susceptibility forming small, less hemolytic colonies. PLoS One 2017; 12:e0183453. [PMID: 28817704 PMCID: PMC5560676 DOI: 10.1371/journal.pone.0183453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022] Open
Abstract
Group B streptococci (GBS; Streptococcus agalactiae) are the leading cause of neonatal invasive diseases and are also important pathogens for elderly adults. Until now, nearly all GBS with reduced penicillin susceptibility (PRGBS) have shown β-hemolytic activity and grow on sheep blood agar. However, we have previously reported three PRGBS clinical isolates harboring a CylK deletion that form small less hemolytic colonies. In this study, we examined the causes of small, less hemolytic colony formation in these clinical isolates. Isogenic strains were sequenced to identify the mutation related to a small colony size. We identified a 276_277insG nucleic acid insertion in the thiamin pyrophosphokinase (tpk) gene, resulting in premature termination at amino acid 103 in TPK, as a candidate mutation responsible for small colony formation. The recombinant strain Δtpk, which harbored the 276_277insG insertion in the tpk gene, showed small colony formation. The recombinant strain ΔcylK, which harbored the G379T substitution in cylK, showed a reduction in hemolytic activity. The phenotypes of both recombinant strains were complemented by the expression of intact TPK or CylK, respectively. Moreover, the use of Rapid ID 32 API and VITEK MS to identify strains as GBS was evaluated clinical isolates and recombinant strains. VITEK MS, but not Rapid ID 32 API, was able to accurately identify the strains as GBS. In conclusion, we determined that mutations in tpk and cylK caused small colonies and reduced hemolytic activity, respectively, and characterized the clinical isolates in detail.
Collapse
Affiliation(s)
- Hirotsugu Banno
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Yosuke Tanaka
- Department of Microbiology Laboratory, Yokohama City Seibu Hospital, St. Marianna University School of Medicine, Asahi-ku, Yokohama, Kanagawa, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomic Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Wanchun Jin
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Jun-ichi Wachino
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Keiko Yamada
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Klinzing DC, Ishmael N, Hotopp JCD, Tettelin H, Shields KR, Madoff LC, Puopolo KM. The two-component response regulator LiaR regulates cell wall stress responses, pili expression and virulence in group B Streptococcus. MICROBIOLOGY-SGM 2013; 159:1521-1534. [PMID: 23704792 DOI: 10.1099/mic.0.064444-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Group B Streptococcus (GBS) remains the leading cause of early onset sepsis among term infants. Evasion of innate immune defences is critical to neonatal GBS disease pathogenesis. Effectors of innate immunity, as well as numerous antibiotics, frequently target the peptidoglycan layer of the Gram-positive bacterial cell wall. The intramembrane-sensing histidine kinase (IM-HK) class of two-component regulatory systems has been identified as important to the Gram-positive response to cell wall stress. We have characterized the GBS homologue of LiaR, the response regulator component of the Lia system, to determine its role in GBS pathogenesis. LiaR is expressed as part of a three-gene operon (liaFSR) with a promoter located upstream of liaF. A LiaR deletion mutant is more susceptible to cell wall-active antibiotics (vancomycin and bacitracin) as well as antimicrobial peptides (polymixin B, colistin, and nisin) compared to isogenic wild-type GBS. LiaR mutant GBS are significantly attenuated in mouse models of both GBS sepsis and pneumonia. Transcriptional profiling with DNA microarray and Northern blot demonstrated that LiaR regulates expression of genes involved in microbial defence against host antimicrobial systems including genes functioning in cell wall synthesis, pili formation and cell membrane modification. We conclude that the LiaFSR system, the first member of the IM-HK regulatory systems to be studied in GBS, is involved in sensing perturbations in the integrity of the cell wall and activates a transcriptional response that is important to the pathogenesis of GBS infection.
Collapse
Affiliation(s)
- David C Klinzing
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Nadeeza Ishmael
- Institute for Genome Sciences, University of Maryland Baltimore, 801 West Baltimore Street, Baltimore, MD 21201, USA.,The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland Baltimore, 801 West Baltimore Street, Baltimore, MD 21201, USA.,The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland Baltimore, 801 West Baltimore Street, Baltimore, MD 21201, USA.,The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Kelly R Shields
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Lawrence C Madoff
- Massachusetts Department of Public Health, Jamaica Plain, MA 02130, USA.,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, MA 01655, USA
| | - Karen M Puopolo
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.,Department of Newborn Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.,Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|