1
|
de Brito CB, do Nascimento Arifa RD, de Oliveira Bezerra R, Dias Igídio CE, de Amorim-Santos BM, de Menezes Santos ACP, Barbosa LM, Barbosa JPP, Cassiano LMG, Kohlhoff M, Fagundes M, Batista RRÁ, Queiroz-Junior CM, Saliba AM, Raposo JDA, Braga FC, Coimbra RS, Teixeira MM, Fagundes CT, Souza DG. Antibiotic-Induced Dysbiosis of the Gut Microbiota Shifts Host Tryptophan Metabolism and Increases the Susceptibility of Mice to Pulmonary Infection With Pseudomonas aeruginosa. Immunology 2025. [PMID: 40387573 DOI: 10.1111/imm.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that mainly infects those who have previously been treated with antibiotics. We hypothesised that antibiotic treatment disrupts tryptophan metabolism, leading to increased susceptibility to P. aeruginosa infection. Our results showed that mice receiving antibiotics exhibited intestinal dysbiosis with alterations in host tryptophan metabolism, a higher mortality rate and a higher bacterial load compared to eubiotic mice. In the lungs of the dysbiotic mice, there was an increase in IDO1 (Indoleamine 2,3-dioxygenase 1) activity and an accumulation of kynurenine after infection, and IDO1-/- mice were resistant to infection after induction of dysbiosis. Importantly, dysbiosis led to increased expression and activation of AHR (Aryl Hydrocarbon Receptor) in an IDO1-dependent manner. Blocking AHR activation in dysbiotic mice resulted in a lower bacterial load. Our data showed that increased AHR activation by kynurenine was associated with decreased phagocytosis of P. aeruginosa by macrophages and neutrophils. In conclusion, our results indicate that dysbiosis resulting from prolonged antimicrobial treatment alters tryptophan metabolism, leading to activation of the IDO1-AHR axis and increasing susceptibility to P. aeruginosa infection. Furthermore, these data suggest that IDO1 or AHR are potential host targets for the prevention of opportunistic infections in patients undergoing antimicrobial therapy.
Collapse
Affiliation(s)
- Camila Bernardo de Brito
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raquel Duque do Nascimento Arifa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafael de Oliveira Bezerra
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Eduardo Dias Igídio
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Maria de Amorim-Santos
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Clara Paiva de Menezes Santos
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Larissa Mendes Barbosa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo Pezzini Barbosa
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Markus Kohlhoff
- Instituto René Rachou (IRR) - FIOCRUZ. FIOCRUZ MG, Belo Horizonte, MG, Brazil
| | - Micheli Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafaela Ribeiro Álvares Batista
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alessandra M Saliba
- Departamento de Microbiologia e Imunologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Divina Almeida Raposo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Mauro Martins Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caio Tavares Fagundes
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle G Souza
- Laboratório de Interação Microrganismo-Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Bustani G, Alghetaa H, Mohammed A, Nagarkatti M, Nagarkatti P. The aryl hydrocarbon receptor: a new frontier in male reproductive system. Reprod Biol Endocrinol 2025; 23:70. [PMID: 40369574 PMCID: PMC12076877 DOI: 10.1186/s12958-025-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. RESULTS This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands and AhR expression in the maturation and function of male reproductive organs. Environmental AhR agonists have been shown to induce oxidative stress, hormonal imbalance, and sperm DNA damage, which impact harmfully on the spermatogenesis process, which leads to reproductive abnormalities. Conversely, certain natural compounds such as resveratrol, curcumin, and lycopene appear to antagonize AhR activation and reduce its negative effects, thus offering potential protective benefits against male reproductive toxicity. Nevertheless, discrepancies persist regarding the exact interplay between AhR signaling and critical reproductive hormones such as testosterone and LH, and it remains unclear how transgenerational epigenetic changes triggered by AhR activation might affect long-term male fertility. CONCLUSION AhR is pivotal in male reproductive physiology, influencing spermatogenesis, sperm quality, and hormone regulation through its interactions with both endogenous and environmental ligands. Persistent pollutants such as dioxins and polycyclic aromatic hydrocarbons cause oxidative damage and hormonal disturbances via AhR, contributing to reduced sperm quality and fertility.
Collapse
Affiliation(s)
- Ghadeer Bustani
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
- The Islamic University, Najaf, Iraq
| | - Hasan Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq.
| | - Amira Mohammed
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
3
|
Vorontsova JE, Akishina AA, Cherezov RO, Simonova OB. A new insight into the aryl hydrocarbon receptor/cytochrome 450 signaling pathway in MG63, HOS, SAOS2, and U2OS cell lines. Biochimie 2023; 207:102-112. [PMID: 36332717 DOI: 10.1016/j.biochi.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is the most common malignant tumor of bone, with rapid progressive growth, early distant metastases, and frequent recurrence after surgical treatment. Osteosarcoma is characterized by changes in the ratio and expression of different cytochrome P450 (CYP) isoforms that can affect the effectiveness of anticancer therapies. The inducible expression of CYP1 genes depends on the ligand-dependent functionality of the aryl hydrocarbon receptor (AHR). In this study, we examined the AHR/CYP1 signaling pathway in four osteosarcoma cell lines (MG63, HOS, SAOS2, and U2OS) induced by the known AHR ligands: indirubin, indole-3-carbinol, and beta-naphthoflavone. Using qPCR and Western blot analysis, we explored the effects of these ligands on the expression of the CYP1 genes and studied the correlation between these responses and the changes in the mRNA and protein levels of AHR and the AHR nuclear translocator (ARNT) in these osteosarcoma cell lines. The results show that the AHR/CYP1 signaling pathway retains its function only in MG63 and HOS cells, and is impaired in SAOS2 and U2OS cells. Our data should be taken into account when recommending new strategies for the treatment of osteosarcoma and when evaluating new drugs against osteosarcoma in vitro.
Collapse
Affiliation(s)
- Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to Heptachlorodibenzo-p-dioxin (HpCDD) Regulates microRNA Expression in Human Lung Fibroblasts. J Occup Environ Med 2019; 61 Suppl 12:S82-S89. [PMID: 31800454 PMCID: PMC8058852 DOI: 10.1097/jom.0000000000001691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Benzo(ghi)perylene (BghiP) and 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) were elevated in serum from personnel deployed to sites with open burn pits. Here, we investigated the ability of BghiP and HpCDD to regulate microRNA (miRNA) expression through the aryl hydrocarbon receptor (AHR). METHODS Human lung fibroblasts (HLFs) were exposed to BghiP and HpCDD. AHR activity was measured by reporter assay and gene expression. Deployment related miRNA were measured by quantitative polymerase chain reaction. AHR expression was depleted using siRNA. RESULTS BghiP displayed weak AHR agonist activity. HpCDD induced AHR activity in a dose-dependent manner. Let-7d-5p, miR-103-3p, miR-107, and miR-144-3p levels were significantly altered by HpCDD. AHR knockdown attenuated these effects. CONCLUSIONS These studies reveal that miRNAs previously identified in sera from personnel deployed to sites with open burn pits are altered by HpCDD exposure in HLFs.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine (Dr Woeller, Dr Hopke, Dr Phipps, Dr Utell); Department of Medicine (Dr Thatcher, Dr Sime, Dr Utell); Microbiology and Immunology (Dr Thakar, Mr Cornwell, Dr Phipps), University of Rochester Medical Center, Rochester; Center for Air Resources Engineering and Science, Clarkson University, Potsdam (Dr Hopke), New York; Emory University, Atlanta, Georgia (Dr Smith, Dr Jones); Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland (Dr Krahl, Dr Mallon)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao Y, Li D, Zhang Z, Pan L. In vitro recombinant yeast assay reveals the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and aryl hydrocarbon receptor (AhR) from scallop Chlamys farreri. Toxicol In Vitro 2019; 59:64-69. [PMID: 30954654 DOI: 10.1016/j.tiv.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
6
|
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2018; 33:13-40. [PMID: 30346068 DOI: 10.1002/ptr.6208] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Based on World Health Organization reports, resistance of bacteria to well-known antibiotics is a major global health challenge now and in the future. Different strategies have been proposed to tackle this problem including inhibition of multidrug resistance pumps and biofilm formation in bacteria and development of new antibiotics with novel mechanism of action. Flavonoids are a large class of natural compounds, have been extensively studied for their antibacterial activity, and more than 150 articles have been published on this topic since 2005. Over the past decade, some promising results were obtained with the antibacterial activity of flavonoids. In some cases, flavonoids (especially chalcones) showed up to sixfold stronger antibacterial activities than standard drugs in the market. Some synthetic derivatives of flavonoids also exhibited remarkable antibacterial activities with 20- to 80-fold more potent activity than the standard drug against multidrug-resistant Gram-negative and Gram-positive bacteria (including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). This review summarizes the ever changing information on antibacterial activity of flavonoids since 2005, with a special focus on the structure-activity relationship and mechanisms of actions of this broad class of natural compounds.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Zhang J, Zong H, Li S, Zhang D, Zhang L, Xia Q. Activation of Aryl Hydrocarbon Receptor Suppresses Invasion of Esophageal Squamous Cell Carcinoma Cell Lines. TUMORI JOURNAL 2018; 98:152-7. [DOI: 10.1177/030089161209800121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aims and Background Esophageal cancer is the eighth most common malignancy and sixth leading cause of cancer deaths in the world. Recent studies have shown the potential role of the aryl hydrocarbon receptor (AhR) in tumor development; however, little is known about its role in esophageal squamous cell carcinoma. In the present study, we evaluated AhR expression in esophageal tumor tissues as well as cell lines and investigated the effects of AhR activation by its agonist BNF on esophageal squamous cell carcinoma invasion using Eca109 and TE-13 cells as a model. Methods Western blotting was performed to detect the AhR and CYP1A1 protein expression. Transwell migration assays were carried out to study the effects of BNF on esophageal squamous cell carcinoma cell invasion. AhR-specific siRNA was used to knock down the expression of AhR protein. Results Our results showed that AhR was highly expressed in esophageal squamous cell carcinoma tissues and cell lines when compared with its expression in normal tissue. AhR siRNA robustly decreased AhR protein expression in both Eca109 and TE-13 cells. BNF significantly inhibited invasion of human esophageal squamous cell carcinoma cells via activation of AhR. Conclusions The obtained results provide critical information on the roles of BNF in mediating esophageal squamous cell carcinoma invasion. This information could be useful for future therapeutic intervention in this lethal human disease.
Collapse
Affiliation(s)
- Jianhao Zhang
- Interventional Oncology Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Shenglei Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Dandan Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Lei Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan
| | - Qingxin Xia
- Department of Pathology, Henan Tumor Hospital, Zhengzhou, Henan, PR China. Jianhao Zhang and Hong Zong contributed equally to this work
| |
Collapse
|
8
|
Wang L, Zhang H, Li C, Yi Y, Liu J, Zhao Y, Tian J, Zhang Y, Wei X, Gao Y, Liang A. Omeprazole Alleviates Aristolochia manshuriensis Kom-Induced Acute Nephrotoxicity. PLoS One 2016; 11:e0164215. [PMID: 27716846 PMCID: PMC5055352 DOI: 10.1371/journal.pone.0164215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022] Open
Abstract
Aristolochia manshuriensis Kom (AMK) is a member of the Aristolochiaceae family and is a well-known cause of aristolochic acid (AA) nephropathy. In this study, we investigated the potential of omeprazole (OM) to alleviate AMK-induced nephrotoxicity. We found that OM reduced mouse mortality caused by AMK and attenuated AMK-induced acute nephrotoxicity in rats. OM enhanced hepatic Cyp 1a1/2 and renal Cyp 1a1 expression in rats, as well as CYP 1A1 expression in human renal tubular epithelial cells (HKCs). HKCs with ectopic CYP 1A1 expression were more tolerant to AA than the control cells. Therefore, OM may alleviate AMK-mediated acute nephrotoxicity through induction of CYP 1A1. We suggest that the coadministration of OM might be beneficial for reducing of AA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Lianmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhuo Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Holen E, Olsvik PA. β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:128-134. [PMID: 27041667 DOI: 10.1016/j.fsi.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate how β-naphthoflavone interacts with lipopolysaccharide (LPS) and polyinosinic acid: polycytidylic acid (poly I: C) induced innate immune parameters as well as phase I and phase II detoxification enzymes in head kidney cells isolated from Atlantic cod. β-naphthoflavone is a pure agonist of aryl hydrocarbon receptor (AhR) while LPS and poly I: C are not. β-naphthoflavone was added to head kidney leukocytes alone or together with LPS or poly I: C and the responses were evaluated in terms of protein and gene expression. The results showed that β-naphthoflavone (25 nM), with and without LPS, significantly induced cytochrome P450 (cyp1c) transcription in cod head kidney cells. β-naphthoflavone (100 nM) in the presence of the virus mimic, poly I: C, also increased cyp1c1transcription. LPS induced cyp1c1, cyclooxygenase 2 (cox2), interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) transcription, genes that were not affected by the tested β-naphthoflavone concentrations alone. However, β-naphthoflavone (25 and 50 nM) strengthened LPS induced cox2 and IL-8 transcription. Cod head kidney cells exposed to β-naphthoflavone concentrations ranging from 25 to 100 nM, with and without LPS or poly I: C, expressed AhR protein. LPS or β-naphthoflavone (5-50 nM) significantly induced leukotriene B4 (LTB4) secretion compared to control. In conclusion, this study suggests that β-naphthoflavone could interfere with LPS induced immune cell signaling in cod head kidney cells.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway.
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
10
|
New insights into the aryl hydrocarbon receptor as a modulator of host responses to infection. Semin Immunopathol 2013; 35:615-26. [PMID: 23963494 DOI: 10.1007/s00281-013-0395-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/16/2013] [Indexed: 12/23/2022]
Abstract
The host response to infection is known to be influenced by many factors, including genetics, nutritional status, age, as well as drug and chemical exposures. Recent advances reveal that the aryl hydrocarbon receptor (AhR) modulates aspects of the innate and adaptive immune response to viral, bacterial, and parasitic organisms. Although many of these observations were made using the high affinity but poorly metabolized AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), not all of the effects are detrimental to the host. Sometimes AhR activation, even with TCDD, was beneficial and improved host resistance and survival. A similar dichotomy is observed in infected AhR-deficient mice, wherein absence of functional AhR sometimes, but not always, alters host resistance. When examined in their totality, current data indicate that AhR controls multiple regulatory pathways that converge with infection-associated signals and depending on the context (e.g., type of pathogen, site of infection), lead to distinct outcomes. This creates numerous exciting opportunities to harness the immunomodulatory action of AhR to transform host responses to infection. Moreover, since many of the mechanisms cued in response to infectious agents are pivotal in the context of other diseases, there is much to be learned about AhR's cellular targets and molecular mechanisms of action.
Collapse
|
11
|
Netíková L, Bogusch P, Heneberg P. Czech Ethanol-Free Propolis Extract Displays Inhibitory Activity against a Broad Spectrum of Bacterial and Fungal Pathogens. J Food Sci 2013; 78:M1421-9. [DOI: 10.1111/1750-3841.12230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/24/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Ladislava Netíková
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Bogusch
- Faculty of Science, Univ. of Hradec Králové; Rokitanského 62; CZ-500 03 Hradec Králové; Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles Univ. in Prague; Ruská 87; CZ-100 00 Prague; Czech Republic
| |
Collapse
|
12
|
Volkov MS, Bolotina NA, Evteev VA, Koblyakov VA. Ah-receptor-independent stimulation of hepatoma 27 culture cell proliferation by polycyclic aromatic hydrocarbons. BIOCHEMISTRY (MOSCOW) 2012; 77:201-7. [DOI: 10.1134/s0006297912020125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011; 38:99-107. [PMID: 21514796 DOI: 10.1016/j.ijantimicag.2011.02.014] [Citation(s) in RCA: 664] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/14/2023]
Abstract
Antibiotic resistance is a major global problem and there is a pressing need to develop new therapeutic agents. Flavonoids are a family of plant-derived compounds with potentially exploitable activities, including direct antibacterial activity, synergism with antibiotics, and suppression of bacterial virulence. In this review, recent advances towards understanding these properties are described. Information is presented on the ten most potently antibacterial flavonoids as well as the five most synergistic flavonoid-antibiotic combinations tested in the last 6 years (identified from PubMed and ScienceDirect). Top of these respective lists are panduratin A, with minimum inhibitory concentrations (MICs) of 0.06-2.0 μg/mL against Staphylococcus aureus, and epicatechin gallate, which reduces oxacillin MICs as much as 512-fold. Research seeking to improve such activity and understand structure-activity relationships is discussed. Proposed mechanisms of action are also discussed. In addition to direct and synergistic activities, flavonoids inhibit a number of bacterial virulence factors, including quorum-sensing signal receptors, enzymes and toxins. Evidence of these molecular effects at the cellular level include in vitro inhibition of biofilm formation, inhibition of bacterial attachment to host ligands, and neutralisation of toxicity towards cultured human cells. In vivo evidence of disruption of bacterial pathogenesis includes demonstrated efficacy against Helicobacter pylori infection and S. aureus α-toxin intoxication.
Collapse
|