1
|
Yoginath Bhambure S, E Costa LIC, Gatty AM, Manjunatha KG, Vittal R, Sannejal AD. Unveiling the traits of antibiotic resistance and virulence in Escherichia coli obtained from poultry waste. Braz J Microbiol 2024; 55:2997-3007. [PMID: 38809497 PMCID: PMC11405593 DOI: 10.1007/s42770-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic resistance and virulence factors in avian pathogenic Escherichia coli (APEC) have become significant concerns, contributing to adverse environmental effects. The extensive use of antibiotics in poultry farming has resulted in the emergence of antibiotic-resistant APEC strains. This study prioritizes the molecular screening of APEC to uncover their antibiotic resistance and virulence attributes, with specific attention to their environmental impact. To address the imperative of understanding APEC pathogenesis, our study analyzed 50 poultry waste samples including 10 poultry litter, 15 fecal matter, 15 wastewater, and 10 anatomical waste samples. For the presence of virulence genes, 35 Escherichia coli isolates were subjected to molecular characterization. Amongst these, 27 were APEC strains demonstrating the presence of at least four virulence genes each. Notably, virulence genes such as fimH, ompA, ybjX, waaL, cvaC, hlyF, iss, ompT, and iroN were observed among all the E. coli isolates. Furthermore, eleven of the APEC strains exhibited resistance to tetracycline, ampicillin, sulphonamides, and fluoroquinolones.These findings highlight the role of APEC as a potential source of environmental pollution serving as a reservoir for virulence and resistance genes. Understanding the dynamics of antibiotic resistance and virulence in APEC is essential due to its potential threat to broiler chickens and the broader population through the food chain, intensifying concerns related to environmental pollution. Recognizing the ecological impact of APEC is essential for developing effective strategies to mitigate environmental pollution and safeguard the health of ecosystems and human populations.
Collapse
Affiliation(s)
- Sahil Yoginath Bhambure
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Lakiesha Inacia Coelho E Costa
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Ashwitha M Gatty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Kavitha Guladahalli Manjunatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Rajeshwari Vittal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Kamal W, Mahmoud R, Allah AE, Farghali AA, Abdelwahab A, Alkhalifah DHM, Hozzein WN, Mohamed MBED, Abdel Aziz SAA. Controlling Multi-Drug-Resistant Traits of Salmonella Obtained from Retail Poultry Shops Using Metal-Organic Framework (MOF) as a Novel Technique. Microorganisms 2023; 11:2506. [PMID: 37894164 PMCID: PMC10609291 DOI: 10.3390/microorganisms11102506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella spp. is considered one of the most important causes of food-borne illness globally. Poultry and its products are usually incriminated in its spread. Treatment with antibiotics is the first choice to deal with such cases; however, multi-drug resistance and biofilm formation have been recorded in animals and humans. This study aimed to detect the antibiotic profile of isolated traits from different sources and to find innovative alternatives, such as MOFs. A total of 350 samples were collected from randomly selected retailed poultry shops in Beni-Suef Province, Egypt. Their antimicrobial susceptibility against eight different antibiotics was tested, and multi-drug resistance was found in most of them. Surprisingly, promising results toward MOF were detected. Cu/Ni/Co-MOF (MOF3) showed superior antibacterial efficiency to Cu/Ni-MOF (MOF2) and Cu-MOF (MOF1) at p value ≤ 0.01. These findings highlight the tendency of Salmonella spp. to develop MDR to most of the antibiotics used in the field and the need to find new alternatives to overcome it, as well as confirming the ability of the environment to act as a source of human and animal affection.
Collapse
Affiliation(s)
- W. Kamal
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (A.A.)
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (A.A.)
- Faculty of Science, Galala University, Sokhna 43511, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.B.E.D.M.); (S.A.A.A.A.)
| | - Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.B.E.D.M.); (S.A.A.A.A.)
| |
Collapse
|
3
|
Wang S, Mirmiran SD, Li X, Li X, Zhang F, Duan X, Gao D, Chen Y, Chen H, Qian P. Temperate phage influence virulence and biofilm-forming of Salmonella Typhimurium and enhance the ability to contaminate food product. Int J Food Microbiol 2023; 398:110223. [PMID: 37120944 DOI: 10.1016/j.ijfoodmicro.2023.110223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Salmonella is a food-borne zoonotic pathogen that threatens food safety and public health security. Temperate phages can influence bacterial virulence and phenotype and play an important role in bacterial evolution. However, most studies on Salmonella temperate phages focus on prophage induced by bacteria, with few reports on Salmonella temperate phages isolated in the environment. Moreover, whether temperate phages drive bacterial virulence and biofilm formation in food and animal models remains unknown. In this study, Salmonella temperate phage vB_Sal_PHB48 was isolated from sewage. TEM and phylogenetic analysis indicated that phage PHB48 belongs to the Myoviridae family. Additionally, Salmonella Typhimurium integrating PHB48 was screened and designated as Sal013+. Whole genome sequencing revealed that the integration site was specific and we confirmed that the integration of PHB48 did not change the O-antigen and coding sequences of Sal013. Our in vitro and in vivo studies showed that the integration of PHB48 could significantly enhance the virulence and biofilm formation of S. Typhimurium. More importantly, the integration of PHB48 significantly improved the colonization and contamination ability of bacteria in food samples. In conclusion, we isolated Salmonella temperate phage directly from the environment and systematically clarified that PHB48 enhanced the virulence and biofilm-forming ability of Salmonella. In addition, we found that PHB48 increased the colonization and contamination ability of Salmonella in food samples. These results indicated that the highly pathogenic Salmonella induced by temperate phage was more harmful to food matrices and public health security. Our results could enhance the understanding of the evolutionary relationship between bacteriophages and bacteria, and raise public awareness of large-scale outbreaks resulting from Salmonella virulence enhancement in food industry.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Seyyed Danial Mirmiran
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Fenqiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaochao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dongyang Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yibao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, 430070 Wuhan, China; College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
4
|
Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens 2022; 12:pathogens12010035. [PMID: 36678383 PMCID: PMC9864247 DOI: 10.3390/pathogens12010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.
Collapse
|
5
|
Surya T, Jeyasekaran G, Shakila RJ, Sivaraman B, Shalini R, Sundhar S, Arisekar U. Prevalence of biofilm forming Salmonella in different seafood contact surfaces of fishing boats, fish landing centres, fish markets and seafood processing plants. MARINE POLLUTION BULLETIN 2022; 185:114285. [PMID: 36327929 DOI: 10.1016/j.marpolbul.2022.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of biofilm forming Salmonella on different seafood contact surfaces was investigated. Out of 384 swab samples, 16.14 % and 1 % were confirmed biochemically and molecularly as Salmonella respectively. One out of four isolates was from the boat deck, and three were from the seafood processing plant. Salmonella was more prevalent in January, June, and September months. Different assays investigated the biofilm forming ability of isolates. Two out of four isolates have shown strong biofilms, and the others were moderate biofilm formers by microtitre plate assay. In the CRA assay, three isolates showed 'rdar' morphotype, and one showed 'bdar' morphotype. All isolates were positive for gcpA gene (~1700 bp), a critical gene found in Salmonella biofilms. The microbial load of Salmonella biofilms on different contact surfaces were determined, stainless steel and HDPE were found prone to biofilms. With this, a suitable mechanism shall be formulated to control the biofilms of Salmonella.
Collapse
Affiliation(s)
- Thamizhselvan Surya
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam 611 002, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
6
|
Antibiofilm activity of a lytic Salmonella phage on different Salmonella enterica serovars isolated from broiler farms. Int Microbiol 2022; 26:205-217. [PMID: 36334144 PMCID: PMC10148789 DOI: 10.1007/s10123-022-00294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AbstractBacteriophages have been mainly used in treating infections caused by planktonic bacterial cells in the veterinary sector. However, their applications as antibiofilm agents have received little attention. Accordingly, a previously isolated Salmonella infecting Siphoviridae phage was investigated for host range against 15 Salmonella enterica isolates (S. Cape, S. Gallinarum, 4 S. Enteritidis, 3 S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, S. Agona, S. Daula, and S. Aba) recovered from the litters of commercial broiler farms. All S. enterica isolates were examined for their biofilm activity using a microtiter plate assay and for adrA, csgD, and gcpA genes using conventional PCR. The phage efficacy against established biofilms produced by the selected seven S. enterica isolates (S. Gallinarum, S. Enteritidis, S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, and S. Agona) was assessed using microtiter plate assay and reverse transcriptase real-time PCR over different incubation times of 5 and 24 h. All S. enterica isolates were strong biofilm formers. Moreover, the phage effectively reduced the biofilm activity of the established S. enterica biofilms in the microtiter plate assay using the independent sample t-test (P < 0.050). Furthermore, the relative expression levels of csgD, gcpA, and adrA genes in the biofilm cells of S. enterica isolate after phage treatment were significantly up-regulated to variable degrees using the independent sample t-test (P < 0.050). In conclusion, the present study revealed the potential use of Salmonella phage in reducing established biofilms produced by S. enterica serovars isolated from broiler farms.
Collapse
|
7
|
Orabi A, Armanious W, Radwan IA, Girh ZMSA, Hammad E, Diab MS, Elbestawy AR. Genetic Correlation of Virulent Salmonella Serovars (Extended Spectrum β-Lactamases) Isolated from Broiler Chickens and Human: A Public Health Concern. Pathogens 2022; 11:1196. [PMID: 36297253 PMCID: PMC9610193 DOI: 10.3390/pathogens11101196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 10/29/2023] Open
Abstract
This study aimed to detect the virulent Salmonella serovars (including ESBLs producing) isolated from broiler chickens and humans. Three hundred broilers and sixty human fecal samples were bacteriologically examined. Thirty (10%) and fourteen (23.4%) Salmonella isolates were recovered from broiler and human samples, respectively. The most predominant serovar was S. enteritidis and S. typhimurium. All Salmonella isolates were confirmed by conventional PCR-based invA and ompA genes. Multidrug resistant (MDR) isolates were screened for the detection of adrA and csgD biofilm-associated genes, which were found in all isolated serovars except one S. typhimurium and 2 S. infantis of chicken isolates that were devoid of the adrA gene. Moreover, MDR isolates were screened for detection of seven resistance genes including ESBLs and other classes of resistance genes. Chicken isolates harbored blaTEM, int1, blaCTX and qnrS genes as 100, 27.8, 11.1 and 11.1%, respectively, while all human isolates harbored blaTEM, int1 and int3 genes. The genetic correlations between virulent Salmonella serovars (including antimicrobial resistance) avian and human origins were compared. In conclusion, the high prevalence of virulent ESBL producing Salmonella serovars in broilers and humans with genetic correlations between them might be zoonotic and public health hazards.
Collapse
Affiliation(s)
- Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wagih Armanious
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ismail A. Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Enas Hammad
- Agricultural Research Center (ARC), Animal Health Research Institute-Mansoura Provincial Lab (AHRI-Mansoura), Giza 12618, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El Kharga 72511, Egypt
| | - Ahmed R. Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
8
|
Jazeela K, Chakraborty A, Kotian A, Aditya V, Kumar BK, Rai P, Karunasagar I, Deekshit VK. Phenotypic characterization of auxotrophic mutant of nontyphoidal Salmonella and determination of its cytotoxicity, tumor inhibiting cytokine gene expression in cell line models. Arch Microbiol 2021; 203:2925-2939. [PMID: 33770232 DOI: 10.1007/s00203-021-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
An auxotrophic mutant of nontyphoidal Salmonella (NTS) strain (Salmonella Oslo) was phenotypically characterized in this study. The characterization was based on phenotype, morphology, motility, biofilm forming ability, growth kinetics, etc. The phenotypic results from the above experiments determined that the mutant showed variation in phenotypic characters from that of wild-type strain. Subsequently, mutant and wild-type NTS were subjected to epithelial cell invasion and intracellular replication assays. The real-time PCR analysis was also performed to analyse expression of tumor inhibiting cytokine genes and virulence genes post-bacterial infection in cell lines. The mutant showed highest invasion potential than wild-type NTS whereas the replication of mutant was slower in both the cell lines. Similar to the wild-type strain, the mutant also retained the cytotoxic potential when analysed in vitro. Furthermore, the expression of proinflammatory cytokine genes such as TNF-α and IL-1β was upsurged with the downregulation of anti-inflammatory cytokine genes like TGF-β, IL-6 and IL-10 post-infection of the mutant strain in cell lines. In addition, virulence genes of Salmonella pathogenicity island one and two of mutant were downregulated in vitro except invA in HeLa cell line. Therefore, the auxotrophic mutant showed positive attributes of a potential antitumor agent in terms of expressing tumor inhibiting cytokine genes when assessed in vitro. Though the study did not check the tumor inhibitory effect of NTS strain directly, findings of the study emphasizes on the development of a novel strain of NTS with less virulence and more immunogenic traits to inhibit tumor cells.
Collapse
Affiliation(s)
- Kadeeja Jazeela
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Anirban Chakraborty
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Akshatha Kotian
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Vankadari Aditya
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Praveen Rai
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Center for Science Education and Research, Kotekar Beeri Road, Paneer Campus, Deralakatte, Mangaluru, 575018, Karnataka, India.
| |
Collapse
|
9
|
A SNP in the Cache 1 Signaling Domain of Diguanylate Cyclase STM1987 Leads to Increased In Vivo Fitness of Invasive Salmonella Strains. Infect Immun 2021; 89:IAI.00810-20. [PMID: 33468583 DOI: 10.1128/iai.00810-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.
Collapse
|
10
|
Ćwiek K, Korzekwa K, Tabiś A, Bania J, Bugla-Płoskońska G, Wieliczko A. Antimicrobial Resistance and Biofilm Formation Capacity of Salmonella enterica Serovar Enteritidis Strains Isolated from Poultry and Humans in Poland. Pathogens 2020; 9:E643. [PMID: 32784631 PMCID: PMC7459949 DOI: 10.3390/pathogens9080643] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica ser. Enteritidis (S. enterica ser. Enteritidis) is the most frequently detected serovar in human salmonellosis, and its ability to produce a biofilm and the risk of transmission from animals and food of animal origin to humans are significant. The main aim of the present work was to compare S. enterica ser. Enteritidis strains isolated from poultry and human feces in terms of resistance profiles, prevalence of selected resistance genes, and their potential for biofilm formation, by assessing their biofilm growth intensity, the prevalence and expression of selected genes associated with this phenomenon, and the correlation between increased antimicrobial resistance and biofilm formation ability of the two tested groups of S. enterica ser. Enteritidis. This study showed a difference in antimicrobial resistance (minimal inhibitory concentration value) between S. enterica ser. Enteritidis groups; however, the majority of multidrug-resistant (MDR) strains were isolated from poultry (environmental samples from chicken broilers, turkey broilers, and laying hens). Differences in the prevalence of resistance genes were observed; the most common gene among poultry strains was floR, and that among strains from humans was blaTEM. S. enterica ser. Enteritidis strains isolated from poultry under the tested incubation conditions exhibited better biofilm growth than strains isolated from humans. A higher level of gene expression associated with the production of cellulose was only detected in the S48 strain isolated from poultry. On the other hand, increased expression of genes associated with quorum sensing was observed in two strains isolated from poultry farms and one strain isolated from human feces.
Collapse
Affiliation(s)
- Katarzyna Ćwiek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland;
| | - Kamila Korzekwa
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw University, S. 51-148 Wroclaw, Poland; (K.K.); (G.B.-P.)
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (A.T.); (J.B.)
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw University, S. 51-148 Wroclaw, Poland; (K.K.); (G.B.-P.)
| | - Alina Wieliczko
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Sciences, 50-366 Wroclaw, Poland;
| |
Collapse
|
11
|
Kotian A, Aditya V, Jazeela K, Karunasagar I, Karunasagar I, Deekshit VK. Effect of bile on growth and biofilm formation of non-typhoidal salmonella serovars isolated from seafood and poultry. Res Microbiol 2020; 171:165-173. [PMID: 32569709 DOI: 10.1016/j.resmic.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022]
Abstract
Bacterial cells adopt various strategies to adapt themselves in diverse environmental conditions. Salmonella is one such bacteria with diverse mechanisms to survive, replicate and infect in wide host range. This study aims at investigating the biofilm-forming ability of multidrug-resistant and sensitive Salmonella serovars on exposure to bile. Antibiogram of all the isolates was determined by disk diffusion method and their biofilm-forming ability in the presence or absence of bile was assessed by microtiter plate assay. Biofilm results were validated by calcofluor, Congo red plate and test tube method. Few isolates were selected for further study of their expression of biofilm related genes on exposure to bile using real time PCR. Among the 59 isolates of Salmonella isolated from seafood and poultry, 30 isolates were multi-drug resistant (MDR). Under control conditions, 57% (n = 25) of the serovars were able to form biofilm. While, 86% (n = 51) of the serovars produced biofilm in the presence of bile. The relative gene expression study of the selected serovars for 8 different genes showed a striking difference in the expression levels, supporting the hypothesis that the presence of bile triggers biofilm formation in food associated strains of non-typhoidal Salmonella by upregulation of genes involved in biofilm production.
Collapse
Affiliation(s)
- Akshatha Kotian
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vankadari Aditya
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Kadeeja Jazeela
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Iddya Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Indrani Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vijaya Kumar Deekshit
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
12
|
Nimnoi P, Pongsilp N. Distribution and expression of virulence genes in potentially pathogenic bacteria isolated from seafood in Thailand. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1842502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pongrawee Nimnoi
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom, Thailand
| | - Neelawan Pongsilp
- Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res Int 2019; 123:258-265. [DOI: 10.1016/j.foodres.2019.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/20/2023]
|
14
|
Elkenany R, Elsayed MM, Zakaria AI, El-sayed SAES, Rizk MA. Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Vet Res 2019; 15:124. [PMID: 31029108 PMCID: PMC6486964 DOI: 10.1186/s12917-019-1867-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/12/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study aimed to survey the prevalence, antimicrobial resistance, and virulence-associated genes of Salmonella enterica recovered from broiler chickens and retail shops at El-Sharkia Province in Egypt. Salmonella virulence factors were determined using the polymerase chain reaction assays targeting the invA, csgD, hilC, bcfC, stn, avrA, mgtC, ompF, sopE1 and pefA genes. RESULTS One hundred tweenty out of 420- samples from broiler chickens' cloacal swabs, farm environmental samples, and freshly dressed whole chicken carcasses were positive Salmonella species. The isolates were serotyped as S. Enteritidis as the most dominant serotypes. Interestingly, none of the isolates were resistant to imipenem. The multidrug resistance was determined in 76.7% of the isolates with multidrug antibiotic resistance index of 0.2-0.6. Eight virulence genes (invA, csgD, hilC, stn, bcfC, mgtC, avrA, and ompf) were characterized among 120 S. enterica isolates with variable frequencies, while sopE1and pefA genes that were completely absent in all isolates. Based on the combination of presence and absence of virulence genes, the most common genetic profile (P7, 30%) was invA and csgD genes. CONCLUSION S. Enteritidis and S. Typhimurium were the most common identified serotypes in the examined sources. Circulation of such strains in broiler farms required introducing special biosecurity and biocontrol measures for control of Salmonella. Such measures might limit the adverse effects of antibiotics and ensure the safety of the environment and animal-derived food.
Collapse
Affiliation(s)
- Rasha Elkenany
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Mona Mohieldin Elsayed
- Department of Hygiene and Zoonosis, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Amira I. Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Shimaa Abd- El-Salam El-sayed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
15
|
Iliadis I, Daskalopoulou A, Simões M, Giaouris E. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Res Int 2018; 107:10-18. [PMID: 29580466 DOI: 10.1016/j.foodres.2018.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/03/2023]
Abstract
Salmonella enterica is a major foodborne bacterial pathogen. This forms biofilms on surfaces and persists, depending on the strain and the environment. The integrative interaction of temperature (T; 13-39 °C), pH (5-8) and sodium chloride (NaCl) concentration (0.5-8.5%) on biofilm formation by two S. enterica strains (ser. Enteritidis and Typhimurium) was here evaluated under low nutrient conditions. This was achieved using response surface methodology to model the combined effect of each factor on the response, through mathematical quadratic fitting of the outcomes of a sequence of designed experiments. These last were executed by incubating stainless steel coupons carrying sessile bacteria, for 24 h, in 1:10 diluted tryptone soya broth, under 15 different combinations of three independent factors (T, pH and NaCl). For each strain, a second order polynomial model, describing the relationship between biofilm formation (log CFU/cm2) and the factors (T, pH and NaCl), was developed using least square regression analysis. Both derived models predicted the combined influences of these factors on biofilm formation, with agreement between predictions and experimental observations (R2 ≥ 0.96, P ≤ 0.0001). For both strains, the increase of NaCl content restricted their sessile growth, while under low salinity conditions (NaCl < 4%) biofilm formation was favored as pH increased, regardless of T. Interestingly, under low salt content, and depending on the strain, biofilm formation was either favored or hindered by increasing T. Thus, 34.5 and 13 °C were the T predicted to maximize biofilm formation by strains Enteritidis and Typhimurium, respectively, something which was also experimentally verified. To sum, these models can predict the interactive influences of crucial food-related factors on biofilm growth of a significant foodborne pathogen towards the efforts to limit its persistence in food industry.
Collapse
Affiliation(s)
- Ioannis Iliadis
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Mitropoliti Ioakeim 2, 81400 Myrina, Lemnos, Greece
| | - Aikaterini Daskalopoulou
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Mitropoliti Ioakeim 2, 81400 Myrina, Lemnos, Greece
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Mitropoliti Ioakeim 2, 81400 Myrina, Lemnos, Greece.
| |
Collapse
|
16
|
Blana V, Georgomanou A, Giaouris E. Assessing biofilm formation by Salmonella enterica serovar Typhimurium on abiotic substrata in the presence of quorum sensing signals produced by Hafnia alvei. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Lamas A, Fernandez-No IC, Miranda JM, Vázquez B, Cepeda A, Franco CM. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses. J Food Prot 2016; 79:1127-34. [PMID: 27357031 DOI: 10.4315/0362-028x.jfp-15-568] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.
Collapse
Affiliation(s)
- A Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - I C Fernandez-No
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica,Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - J M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - B Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - A Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - C M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
18
|
Huertas MG, Zárate L, Acosta IC, Posada L, Cruz DP, Lozano M, Zambrano MM. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. MICROBIOLOGY-SGM 2014; 160:2595-2606. [PMID: 25261190 DOI: 10.1099/mic.0.081992-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.
Collapse
Affiliation(s)
- Mónica G Huertas
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - Lina Zárate
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - Iván C Acosta
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - Leonardo Posada
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - Diana P Cruz
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - Marcela Lozano
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| | - María M Zambrano
- Molecular Genetics, Corporación Corpogen, Carrera 5 #66A-34, Bogotá, Colombia
| |
Collapse
|
19
|
Seixas R, Machado J, Bernardo F, Vilela C, Oliveira M. Biofilm formation by Salmonella enterica serovar 1,4,[5],12:i:- Portuguese isolates: a phenotypic, genotypic, and socio-geographic analysis. Curr Microbiol 2014; 68:670-7. [PMID: 24463530 DOI: 10.1007/s00284-014-0523-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/28/2013] [Indexed: 11/30/2022]
Abstract
Biofilm-forming ability is well established as an important virulence factor. However, there are no studies available regarding biofilm formation of Salmonella Typhimurium 1,4,[5],12:i:-, the new pandemic serovar in Europe. To address this problem, biofilm expression by Salmonella 1,4,[5],12:i:- was evaluated using 133 isolates from clinical, environmental and animal origins, collected in Portugal from 2006 to 2011. Biofilm detection was performed by phenotypic and genotypic methods, such growth characterization in agar and broth medium, optical density determination by microtiter assays and direct observation by fluorescent in situ hybridization. Biofilm-related genes adrA, csgD and gcpA were detected by PCR. A socio-geographic characterization of strains as biofilm producers was also performed. Results showed that biofilm formation in monophasic Salmonella is widely distributed in Portuguese isolates and could be one of the reasons for its dissemination in this country. Biofilm expression varies between locations, showing that isolates from some regions like Lisboa or Ponta Delgada have an increased ability to persist in the environment due to an enhanced biofilm production. Biofilm formation also varies between risk groups, with a higher prevalence in isolates from salmonellosis infections in women. Therefore, the analysis of the socio-geographic distribution of biofilm-forming bacteria should be considered for the establishment of more adequate regulatory measures or therapeutics regimens, especially important due to the continuous increase of infections caused by antimicrobial resistant microorganisms.
Collapse
Affiliation(s)
- Rui Seixas
- Department of Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
20
|
Perni S, Hackett L, Goss RJM, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express 2013; 3:66. [PMID: 24188712 PMCID: PMC3843566 DOI: 10.1186/2191-0855-3-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022] Open
Abstract
Engineered biofilms comprising a single recombinant species have demonstrated remarkable activity as novel biocatalysts for a range of applications. In this work, we focused on the biotransformation of 5-haloindole into 5-halotryptophan, a pharmaceutical intermediate, using Escherichia coli expressing a recombinant tryptophan synthase enzyme encoded by plasmid pSTB7. To optimise the reaction we compared two E. coli K-12 strains (MC4100 and MG1655) and their ompR234 mutants, which overproduce the adhesin curli (PHL644 and PHL628). The ompR234 mutation increased the quantity of biofilm in both MG1655 and MC4100 backgrounds. In all cases, no conversion of 5-haloindoles was observed using cells without the pSTB7 plasmid. Engineered biofilms of strains PHL628 pSTB7 and PHL644 pSTB7 generated more 5-halotryptophan than their corresponding planktonic cells. Flow cytometry revealed that the vast majority of cells were alive after 24 hour biotransformation reactions, both in planktonic and biofilm forms, suggesting that cell viability was not a major factor in the greater performance of biofilm reactions. Monitoring 5-haloindole depletion, 5-halotryptophan synthesis and the percentage conversion of the biotransformation reaction suggested that there were inherent differences between strains MG1655 and MC4100, and between planktonic and biofilm cells, in terms of tryptophan and indole metabolism and transport. The study has reinforced the need to thoroughly investigate bacterial physiology and make informed strain selections when developing biotransformation reactions.
Collapse
|
21
|
Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas GJ. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 2013; 97:298-309. [PMID: 23747091 DOI: 10.1016/j.meatsci.2013.05.023] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Attachment of potential spoilage and pathogenic bacteria to food contact surfaces and the subsequent biofilm formation represent serious challenges to the meat industry, since these may lead to cross-contamination of the products, resulting in lowered-shelf life and transmission of diseases. In meat processing environments, microorganisms are sometimes associated to surfaces in complex multispecies communities, while bacterial interactions have been shown to play a key role in cell attachment and detachment from biofilms, as well as in the resistance of biofilm community members against antimicrobial treatments. Disinfection of food contact surfaces in such environments is a challenging task, aggravated by the great antimicrobial resistance of biofilm associated bacteria. In recent years, several alternative novel methods, such as essential oils and bacteriophages, have been successfully tested as an alternative means for the disinfection of microbial-contaminated food contact surfaces. In this review, all these aspects of biofilm formation in meat processing environments are discussed from a microbial meat-quality and safety perspective.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Lemnos 81400, Greece.
| | - Even Heir
- Nofima Mat AS, Osloveien 1, N-1430 Ås, Norway
| | - Michel Hébraud
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Nikos Chorianopoulos
- Veterinary Research Institute of Athens, Greek Agricultural Organization "Demeter", Aghia Paraskeui15310, Greece
| | | | | | | | - Mickaël Desvaux
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Sandra Renier
- Institut National de la Recherche Agronomique, site de Theix, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
22
|
Giaouris E, Samoilis G, Chorianopoulos N, Ercolini D, Nychas GJ. Differential protein expression patterns between planktonic and biofilm cells of Salmonella enterica serovar Enteritidis PT4 on stainless steel surface. Int J Food Microbiol 2013; 162:105-13. [PMID: 23376784 DOI: 10.1016/j.ijfoodmicro.2012.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the proteome of a strain of S. enterica serovar Enteritidis PT4, grown either as biofilm on stainless steel surface or as free-floating (planktonic) in Brain Heart (BH) broth, was investigated in order to detect the strong differences in whole-cell protein expression patterns between the two growth styles. The proteins extracted from both types of cells were subjected to 2-D PAGE, followed by in-gel tryptic digestion, extraction, subsequent MALDI-TOF mass spectrometry (MS) analysis and finally database searches for protein identification. Using this approach, 30 proteins were identified as differentially expressed between the two growth modes on an "on-off" basis, that is, proteins that were detected in one case but not in the other. In particular, 20 and 10 proteins were identified in biofilm and planktonic-grown cells, respectively. The group of proteins whose expression was visible only during biofilm growth included proteins involved in global regulation and stress response (ArcA, BtuE, Dps, OsmY, SspA, TrxA, YbbN and YhbO), nutrient transport (Crr, DppA, Fur and SufC), degradation and energy metabolism (GcvT, GpmA, RibB), detoxification (SseA and YibF), DNA metabolism (SSB), curli production (CsgF), and murein synthesis (MipA). To summarize, this study demonstrates that biofilm growth of S. Enteritidis causes distinct changes in protein expression and offers valuable new data regarding some of the proteins presumably involved in this process. The putative role of these proteins in the maintenance of a biofilm community in Salmonella and other bacteria is discussed.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Mitropoliti Ioakeim 2, Myrina, 81400 Lemnos, Greece.
| | | | | | | | | |
Collapse
|