1
|
Moraes CTP, Longo J, Silva LB, Pimenta DC, Carvalho E, Morone MSLC, da Rós N, Serrano SMT, Santos ACM, Piazza RMF, Barbosa AS, Elias WP. Surface Protein Dispersin of Enteroaggregative Escherichia coli Binds Plasminogen That Is Converted Into Active Plasmin. Front Microbiol 2020; 11:1222. [PMID: 32625178 PMCID: PMC7315649 DOI: 10.3389/fmicb.2020.01222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/14/2020] [Indexed: 01/24/2023] Open
Abstract
Dispersin is a 10.2 kDa-immunogenic protein secreted by enteroaggregative Escherichia coli (EAEC). In the prototypical EAEC strain 042, dispersin is non-covalently bound to the outer membrane, assisting dispersion across the intestinal mucosa by overcoming electrostatic attraction between the AAF/II fimbriae and the bacterial surface. Also, dispersin facilitates penetration of the intestinal mucus layer. Initially characterized in EAEC, dispersin has been detected in other E. coli pathotypes, including those isolated from extraintestinal sites. In this study we investigated the binding capacity of purified dispersin to extracellular matrix (ECM), since dispersin is exposed on the bacterial surface and is involved in intestinal colonization. Binding to plasminogen was also investigated due to the presence of conserved carboxy-terminal lysine residues in dispersin sequences, which are involved in plasminogen binding in several bacterial proteins. Moreover, some E. coli components can interact with this host protease, as well as with tissue plasminogen activator, leading to plasmin production. Recombinant dispersin was produced and used in binding assays with ECM molecules and coagulation cascade compounds. Purified dispersin bound specifically to laminin and plasminogen. Interaction with plasminogen occurred in a dose-dependent and saturable manner. In the presence of plasminogen activator, bound plasminogen was converted into plasmin, its active form, leading to fibrinogen and vitronectin cleavage. A collection of E. coli strains isolated from human bacteremia was screened for the presence of aap, the dispersin-encoding gene. Eight aap-positive strains were detected and dispersin production could be observed in four of them. Our data describe new attributes for dispersin and points out to possible roles in mechanisms of tissue adhesion and dissemination, considering the binding capacity to laminin, and the generation of dispersin-bound plasmin(ogen), which may facilitate E. coli spread from the colonization site to other tissues and organs. The cleavage of fibrinogen in the bloodstream, may also contribute to the pathogenesis of sepsis caused by dispersin-producing E. coli.
Collapse
Affiliation(s)
| | - Jonathan Longo
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Ludmila B Silva
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology - Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Ana Carolina M Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| | - Waldir P Elias
- Laboratory of Bacteriology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
2
|
Andrade FB, Abreu AG, Nunes KO, Gomes TA, Piazza RM, Elias WP. Distribution of serine protease autotransporters of Enterobacteriaceae in typical and atypical enteroaggregative Escherichia coli. INFECTION GENETICS AND EVOLUTION 2017; 50:83-86. [DOI: 10.1016/j.meegid.2017.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
|
3
|
Khalil U, Younus M, Asghar N, Siddiqui F, Gómez-Duarte OG, Wren BW, Bokhari H. Phenotypic and genotypic characterization of enteroaggregative Escherichia coli isolates from pediatric population in Pakistan. APMIS 2016; 124:872-80. [PMID: 27485156 DOI: 10.1111/apm.12577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) are a leading cause of diarrhea among children. The objective of this study was to define the frequency of EAEC among diarrheal children from flood-affected areas as well as sporadic cases, determine multidrug resistance, and evaluation of virulence using an in vivo model of pathogenesis. Stool samples were collected from 225 diarrheal children from 2010 to 2011 from flood-affected areas as well as from sporadic cases in Pakistan. Identified EAEC isolates were characterized by phylogrouping, antibiotic resistance patterns including the extended-spectrum beta lactamase spectrum, single nucleotide polymorphism detection in gyrA and parC, and virulence potential using wax worm, G. mellonella. A total of 35 (12.5%) confirmed EAEC isolates were identified among 225 E. coli isolates. EAEC isolates displayed high resistance to tetracycline, ampicillin, and cefaclor. A total of 34.28% were ESBL positive. Single nucleotide polymorphism detection revealed 37.14% and 68.57% isolates were positive for SNPs in gyrA (A660 -T660 ) and parC (C330 -T330 ), respectively. Phylogrouping revealed that B2 phylogroup was more prevalent among all EAEC isolates tested followed by D, A, B1, and non-typeable (NT). Infection of G. mellonella with EAEC showed that killing infective dose was 100% higher than E. coli DH5 alpha control. EAEC are prevalent among Pakistani children with diarrhea, they are highly resistant to antibiotics, and predominantly fall into B2 phylogroup. Epidemiologic surveillance of EAEC and other E. coli pathotypes is critical to assess not only the role of these pathogens in diarrheal disease but also to determine the extent of multidrug resistance among the population.
Collapse
Affiliation(s)
- Uzma Khalil
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Mahwish Younus
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Naeem Asghar
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Fariha Siddiqui
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Oscar G Gómez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Habib Bokhari
- COMSATS Institute of Information Technology, Islamabad, Pakistan.
| |
Collapse
|
4
|
Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 2015; 27:614-30. [PMID: 24982324 DOI: 10.1128/cmr.00112-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission, reservoirs, and symptoms. Manifestations associated with EAEC infection include watery diarrhea, mucoid diarrhea, low-grade fever, nausea, tenesmus, and borborygmi. In early studies, EAEC was considered to be an opportunistic pathogen associated with diarrhea in HIV patients and in malnourished children in developing countries. In recent studies, associations with traveler's diarrhea, the occurrence of diarrhea cases in industrialized countries, and outbreaks of diarrhea in Europe and Asia have been reported. In the spring of 2011, a large outbreak of hemolytic-uremic syndrome (HUS) and hemorrhagic colitis occurred in Germany due to an EAEC O104:H4 strain, causing 54 deaths and 855 cases of HUS. This strain produces the potent Shiga toxin along with the aggregative fimbriae. An outbreak of urinary tract infection associated with EAEC in Copenhagen, Denmark, occurred in 1991; this involved extensive production of biofilm, an important characteristic of the pathogenicity of EAEC. However, the heterogeneity of EAEC continues to complicate diagnostics and also our understanding of pathogenicity.
Collapse
|
5
|
Abstract
Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease.
Collapse
|