1
|
Cao F, Chen J, Lin ZT, Lin HY, Liu B, Chen ZW, Ma XH, Zhang YH. Chemical Constituents from the Fruit of Melia azedarach and Their Anti-Inflammatory Activity. Antioxidants (Basel) 2024; 13:1338. [PMID: 39594480 PMCID: PMC11591037 DOI: 10.3390/antiox13111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Phytochemical investigations of Melia azedarach fruits have led to the isolation of a novel tirucallane triterpenoid (1), four new limonoids (2-5), and four known limonoids (6-9). Their structures were clarified by comprehensive spectroscopic and spectrometric analyses. The anti-inflammatory activities of isolated compounds were assessed in vitro. Compound 2 exhibited the most potent anti-inflammatory effect, with an IC50 value of 22.04 μM. Additionally, compound 2 attenuated LPS-induced reactive oxygen species (ROS) production and reduced the levels of inflammatory mediators IL-6 and TNF-α. A mechanistic study revealed that limonoid 2 suppresses the expression of iNOS and JAK2 and is implicated in the modulation of the NF-κB signaling cascade, which reveals its anti-inflammatory actions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin-Hua Ma
- Provincial Key Laboratory of Natural Drug Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (F.C.); (J.C.); (Z.-T.L.); (H.-Y.L.); (B.L.); (Z.-W.C.)
| | - Yong-Hong Zhang
- Provincial Key Laboratory of Natural Drug Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou 350122, China; (F.C.); (J.C.); (Z.-T.L.); (H.-Y.L.); (B.L.); (Z.-W.C.)
| |
Collapse
|
2
|
Sun A, Zhang H, Pang F, Niu G, Chen J, Chen F, Zhang J. Essential genes of the macrophage response to Staphylococcus aureus exposure. Cell Mol Biol Lett 2018; 23:25. [PMID: 29849669 PMCID: PMC5966896 DOI: 10.1186/s11658-018-0090-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/06/2018] [Indexed: 12/15/2022] Open
Abstract
Background Although significant advances have been made in understanding the mechanisms of macrophage response to Staphylococcus aureus infection, the molecular details are still elusive. Identification of the essential genes and biological processes of macrophages that are specifically changed at different durations of S. aureus exposure is of great clinical significance. Methods We aimed to identify the significantly changed genes and biological processes of S. aureus-exposed macrophages. We systematically analyzed the macrophage gene expression profile GSE 13670 database with 8 h, 24 h or 48 h S. aureus infection. The results were further confirmed by western blot and quantitative polymerase chain reaction (qPCR) analyses. Results After 8 h of S. aureus infection, the expression of 624 genes was significantly changed. Six hundred thirteen differentially expressed genes (DEGs) were identified after 24 h of S. aureus infection. Two hundred fifty-three genes were significantly changed after 48 h of S. aureus infection. STAT1 was consistently up-regulated in these three treatments. TP53, JAK2, CEBPA, STAT3, MYC, CTNNB1 and PRKCA were only identified in the 8 h or 24 h S. aureus infection groups. CTNNB1 and PRKCA were for the first time identified as potential essential genes in S. aureus infection of macrophages. In the Gene Ontology (GO) term analysis, the defense response was shown to be the most significantly changed biological process among all processes; KEGG pathway analysis identified the JAK-STAT signaling pathway involved in early infection. Conclusions Our systematic analysis identified unique gene expression profiles and specifically changed biological processes of the macrophage response to different S. aureus exposure times.
Collapse
Affiliation(s)
- Aixia Sun
- 1Department of Clinical Laboratory, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Hongwei Zhang
- 1Department of Clinical Laboratory, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Feng Pang
- 1Department of Clinical Laboratory, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Guifen Niu
- 2Department of Endocrinology, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Jianzhong Chen
- 3Department of Clinical Pharmacy, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Fei Chen
- 3Department of Clinical Pharmacy, Liaocheng People's Hospital, 67 West Dongchang Road, Liaocheng, 252000 Shandong Province People's Republic of China
| | - Jian Zhang
- Outpatient Vaccination Service, Center for Disease Control and Prevention of Liaocheng, Liaocheng, 252000 Shandong Province People's Republic of China
| |
Collapse
|
3
|
Lee SJ, Birhanu BT, Awji EG, Kim MH, Park JY, Suh JW, Park SC. BaeR protein acts as an activator of nuclear factor-kappa B and Janus kinase 2 to induce inflammation in murine cell lines. Can J Microbiol 2016; 62:753-61. [PMID: 27374640 DOI: 10.1139/cjm-2016-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BaeR, a response regulator protein, takes part in multidrug efflux, bacterial virulence activity, and other biological functions. Recently, BaeR was shown to induce inflammatory responses by activating the mitogen-activated protein kinases (MAPKs). In this study, we investigated additional pathways used by BaeR to induce an inflammatory response. BaeR protein was purified from Salmonella enterica Paratyphi A and subcloned into a pPosKJ expression vector. RAW 264.7 cells were treated with BaeR, and RNA was extracted by TRIzol reagent for RT-PCR. Cytokine gene expression was analyzed by using the comparative cycle threshold method, while western blotting and ELISA were used to assess protein expression. We confirmed that BaeR activates nuclear factor-kappa B (NF-κB), thereby inducing an inflammatory response and increases the production of interleukins (IL-)1β and IL-6. During this process, the Janus kinase 2 (JAK2)-STAT1 signaling pathway was activated, resulting in an increase in the release of interferons I and II. Additionally, COX-2 was activated and its expression increased with time. In conclusion, BaeR induced an inflammatory response through activation of NF-κB in addition to the MAPKs. Furthermore, activation of the JAK2-STAT1 pathway and COX-2 facilitated the cytokine binding activity, suggesting an additional role for BaeR in the modulation of the immune system of the host and the virulence activity of the pathogen.
Collapse
Affiliation(s)
- Seung-Jin Lee
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Elias Gebru Awji
- b COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Myung Hee Kim
- c Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, KRIBB, Daejeon 305-806, Republic of Korea
| | - Ji-Yong Park
- d Cleanbio Research Institute, Daejeon 301-212, Korea
| | - Joo-Won Suh
- e Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728 Yongin, Gyeonggi, Republic of Korea
| | - Seung-Chun Park
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
4
|
Zhu F, Zhou Y, Jiang C, Zhang X. Role of JAK-STAT signaling in maturation of phagosomes containing Staphylococcus aureus. Sci Rep 2015; 5:14854. [PMID: 26442670 PMCID: PMC4595848 DOI: 10.1038/srep14854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
Phagocytosis is a required mechanism for the defense against pathogens. Staphylococcus aureus, an important bacterial pathogen, can promptly escape from phagosomes and proliferate within the cytoplasm of host. However, the mechanism of phagocytosis against S. aureus has not been intensively investigated. In this study, the S. aureus was engulfed by macrophages (RAW264.7 cells) but not digested by the cells, suggesting that the phagosomes did not maturate in macrophages. Further investigation revealed that peptidoglycan (PG) induced the phagosome maturation of macrophages, resulting in the eradication of S. aureus. Genome-wide analysis and quantitative real-time PCR indicated that the JAK-STAT pathway was activated by PG during the phagosome maturation of macrophages against S. aureus. This finding presented that the PG-activated JAK-STAT pathway was required for phagosome maturation. Therefore, our study contributed evidence that revealed a novel aspect of PG-triggered JAK-STAT pathway in the phagosome maturation of macrophages.
Collapse
Affiliation(s)
- Fei Zhu
- Collaborative Innovation Center of Deep Sea Biology, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yadong Zhou
- Collaborative Innovation Center of Deep Sea Biology, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunxia Jiang
- Collaborative Innovation Center of Deep Sea Biology, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobo Zhang
- Collaborative Innovation Center of Deep Sea Biology, Key Laboratory of Animal Virology of Ministry of Agriculture and College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Kodavanti UP, Ward WO, Peltier RE, Zelikoff J, Chen LC. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J Immunotoxicol 2014; 12:140-53. [PMID: 24911330 DOI: 10.3109/1547691x.2014.914609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (< 2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (> 96%) of dusts were > 10 µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10-53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m(3) (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750-1000 mg WTC dust/m(3). Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) - after accounting for any impact from ISO alone - displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ.
Collapse
Affiliation(s)
- Mitchell D Cohen
- Department of Environmental Medicine, New York University School of Medicine , NY , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee SJ, Gebru Awji E, Kim MH, Park SC. BaeR protein from Salmonella enterica serovar Paratyphi A induces inflammatory response in murine and human cell lines. Microbes Infect 2013; 15:951-7. [PMID: 24055826 DOI: 10.1016/j.micinf.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
BaeR is the response regulator of the two-component system, BaeSR, found in Escherichia coli (E. coli) and Salmonella. Several biological functions of BaeR, related to multidrug efflux and bacterial virulence, have been described. Herein, we report a putative function of BaeR during inflammatory response of the host by using BaeR protein of Salmonella enterica Paratyphi A (S. Paratyphi A) origin overexpressed in E. coli, and RAW 264.7 and THP-1 cells as in vitro models. BaeR (3 μg/ml) upregulated iNOS mRNA expression in both cell lines, and induced significant production of NO. Greater than ten-fold (TNF-α), 24-fold (IL-1β) and 156-fold (IL-6) increases in mRNA expression levels were observed in THP-1 cells treated with BaeR, compared to untreated controls. Furthermore, an eight-fold (IL-1β), 12-fold (IL-6) and 41-fold (TNF-α) higher protein concentrations were observed in RAW 264.7 cells stimulated with BaeR, compared to control cells. Immunoblot analysis showed BaeR-induced phosphorylation of the MAPKs (ERK 1/2, JNK and p38 MAPK) in RAW 264.7 cells. Pharmacological inhibition of the three MAPKs using specific inhibitors resulted in significant reduction of BaeR-induced NO production and iNOS mRNA expression by inhibitors of JNK and p38 MAPK. Also, all inhibitors of the MAPKs significantly attenuated BaeR-induced IL-1β, IL-6 and TNF-α at both transcript and protein levels with different degrees of inhibition. Taken together, our data suggest that BaeR is a putative inducer of inflammatory response and the MAPKs are involved in the process.
Collapse
Affiliation(s)
- Seung Jin Lee
- Laboratory of Veterinary Pharmacokinetics & Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Azevedo E, Oliveira LT, Castro Lima AK, Terra R, Dutra PML, Salerno VP. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va. J Parasitol Res 2012; 2012:275436. [PMID: 22792440 PMCID: PMC3391898 DOI: 10.1155/2012/275436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.
Collapse
Affiliation(s)
- Elisama Azevedo
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Microbiologia Médica, Faculdade de Ciências Médicas, UERJ, 20550-170 Rio de Janerio, RJ, Brazil
| | - Leandro Teixeira Oliveira
- Departamento Biociências, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, 21941-599 Rio de Janerio, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Microbiologia Médica, Faculdade de Ciências Médicas, UERJ, 20550-170 Rio de Janerio, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biodinâmica do Movimento, EEFD, UFRJ, 21941-599 Rio de Janerio, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Verônica P. Salerno
- Departamento Biociências, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, 21941-599 Rio de Janerio, RJ, Brazil
| |
Collapse
|