1
|
Tawfik SA, Azab M, Ramadan M, Shabayek S, Abdellah A, Al Thagfan SS, Salah M. The Eradication of Helicobacter pylori Was Significantly Associated with Compositional Patterns of Orointestinal Axis Microbiota. Pathogens 2023; 12:832. [PMID: 37375522 DOI: 10.3390/pathogens12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is significantly linked to various diseases that seriously impact human health, such as gastric ulcers, chronic gastritis and gastric adenocarcinoma. METHODS The compositional shifts in bacterial communities of the orointestinal axis were surveyed pre/post-eradication of H. pylori. In total, 60 samples, including stool and salivary specimens, were collected from 15 H. pylori-positive individuals (HPP) before beginning and 2 months after receiving the eradication therapy. The V3-V4 regions of the 16S rRNA gene were sequenced using MiSeq. RESULTS Overall, oral microbiomes were collectively more diverse than the gut microbiomes (Kruskal-Wallis; p = 3.69 × 10-5). Notably, the eradication of H. pylori was associated with a significant reduction in the bacterial diversity along the orointestinal axis (Wilcoxon rank sum test; p = 6.38 × 10-3). Interestingly, the oral microbiome of HPP showed a positive correlation between Proteobacteria and Fusobacteria, in addition to a significant predominance of Streptococcus, in addition to Eubacterium_eligens, Haemophilus, Ruminococcaceae, Actinomyces and Staphylococcus. On the other hand, Fusobacterium, Veillonella, Catenibacterium, Neisseria and Prevotella were significantly enriched upon eradication of H. pylori. Generally, Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the orointestinal axis (r = 0.67; p = 0.0006). The eradication of H. pylori was positively linked to two distinctive orotypes (O3 and O4). Orotype O4 was characterized by a robust abundance of Veillonella and Fusobacteria. The gut microbiomes during H. pylori infection showed a remarkable predominance of Clostridium_sensu_stricto_1 and Escherichia_Shigella. Likewise, Bifidobacterium and Faecalibacterium were significantly enriched upon eradication of H. pylori. CONCLUSIONS Finally, the impact of eradication therapy clearly existed on the representation of certain genera, especially in the oral microbiome, which requires particular concern in order to counteract and limit their subsequent threats.
Collapse
Affiliation(s)
- Sally Ali Tawfik
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ali Abdellah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sultan S Al Thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munaearah 42353, Saudi Arabia
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
2
|
Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203:2747-2760. [PMID: 33791834 PMCID: PMC8012020 DOI: 10.1007/s00203-021-02300-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
A homeostatic balance exists between the resident microbiota in the oral cavity and the host. Perturbations of the oral microbiota under particular conditions can contribute to the growth of non-oral pathogens that are hard to kill because of their higher resistance to antimicrobials, raising the probability of treatment failure and reinfection. The presence of these bacteria in the oral cavity has been proven to be associated with several oral diseases such as periodontitis, caries, and gingivitis, and systemic diseases of importance in clinical medicine such as cystic fibrosis, HIV, and rheumatoid arthritis. However, it is still controversial whether these species are merely transient members or unique to the oral cavity. Mutualistic and antagonistic interactions between the oral microbiota and non-oral pathogens can also occur, though the mechanisms used by these bacteria are not clear. Therefore, this review presents an overview of the current knowledge about the presence of non-oral bacteria in the oral cavity, their relationship with systemic and oral diseases, and their interactions with oral bacteria.
Collapse
|
3
|
Turri A, Čirgić E, Shah FA, Hoffman M, Omar O, Dahlin C, Trobos M. Early plaque formation on PTFE membranes with expanded or dense surface structures applied in the oral cavity of human volunteers. Clin Exp Dent Res 2020; 7:137-146. [PMID: 33169543 PMCID: PMC8019762 DOI: 10.1002/cre2.344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives This clinical randomized study aimed to evaluate the early plaque formation on nonresorbable polytetrafluoroethylene (PTFE) membranes having either a dense (d‐PTFE) or an expanded (e‐PTFE) microstructure and exposed to the oral cavity. Material and Methods Twelve individuals were enrolled in this study. In a split‐mouth design, five test membranes (e‐PTFE) with a dual‐layer configuration and five control membranes (d‐PTFE) were bonded on the buccal surfaces of posterior teeth of each subject. All study subjects refrained from toothbrushing during the study period. Specimens were detached from the teeth at 4 and 24 hr and subjected to viability counting, confocal microscopy, and scanning electron microscopy. Plaque samples were harvested from neighboring teeth at baseline, 4, and 24 hr, as control. Wilcoxon signed rank test was applied. Results No bond failure of the membranes was reported. Between the early and late time points, viable bacterial counts increased on all membranes, with no difference between the test and control. The number of Staphylococcus spp. decreased on the tooth surfaces and increased on both membranes overtime, with a significant difference compared to teeth. The total biomass and average biofilm thickness of live and dead cells were significantly greater at the d‐PTFE barriers after 4 hr. Conclusion This study demonstrated that the e‐PTFE membrane was associated with a lesser degree of biofilm accumulation during the initial exposure compared to the d‐PTFE membrane. The present experimental setup provides a valuable toolbox to study the in vivo behavior of different membranes used in guided bone regeneration (GBR).
Collapse
Affiliation(s)
- Alberto Turri
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,The Brånemark Clinic, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden
| | - Emina Čirgić
- Department of Orthodontics, University Clinics of Odontology, Public Dental Service, Region Västra Götaland, Gothenburg, Sweden.,Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hoffman
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Vice Deanship for Postgraduate Studies and Scientific Research, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral, Maxillofacial Surgery and Research and Development, NU-Hospital Organisation, Trollhättan, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Analysis of Cytoplasmic and Secreted Proteins of Staphylococcus aureus Revealed Adaptive Metabolic Homeostasis in Response to Changes in the Environmental Conditions Representative of the Human Wound Site. Microorganisms 2020; 8:microorganisms8071082. [PMID: 32698515 PMCID: PMC7409162 DOI: 10.3390/microorganisms8071082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
The pathogenesis of Staphylococcus aureus is mainly attributed to its capability to adjust to changes in environmental conditions, including those present on human skin or within a wound site. This study investigated the changes in the cytoplasmic and secreted proteins in S. aureus that occurred in response to alterations in the environmental parameters that could be found in the human wound site. In total, sixty differentially regulated cytoplasmic proteins were detected using a label-free quantification approach, and these proteins were classified into ten molecular functions: protein biosynthesis, glycolysis, signal transduction, metabolism, cell cycle, transport, energy generation, cell anchorage, nucleotide biosynthesis and unknown. These changes represented characteristic protein profiles when evaluated by principal component analysis. The bacterium responded to elevated NaCl at pH 6 by decreasing the abundance of the majority of cytoplasmic proteins, while at pH 8 there was an increase in the levels of cytoplasmic proteins in comparison to the untreated cells. The analysis of the secreted proteins showed that there was a high degree of difference in both the intensity and the distribution of many individual protein bands in response to environmental challenges. From these results, it was deduced that specific metabolic homeostasis occurred under each combination of defined environmental conditions.
Collapse
|
5
|
Gonçalves E, Carvalhal R, Mesquita R, Azevedo J, Coelho MJ, Magalhães R, Ferraz MP, Manso MC, Gavinha S, Pina C, Lopes Cardoso I. Detection of Staphylococcus aureus (MRSA/MSSA) in surfaces of dental medicine equipment. Saudi J Biol Sci 2019; 27:1003-1008. [PMID: 32256160 PMCID: PMC7105652 DOI: 10.1016/j.sjbs.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) represents one of the major causes of nosocomial infections, leading to high mortality. Surfaces in clinics, as well as the attending uniform and the hands of the dental doctor can be MRSA reservoirs. Having this in mind, the purpose of this study was to evaluate the presence of Methicillin-Sensitive Staphylococcus aureus (MSSA) and MRSA on dental medicine equipment surfaces. 354 Samples were collected from six equipment surfaces in six attendance areas before and after patient consultation and cultured in a selective medium. Polymerase Chain Reaction (PCR) was used to confirm the identity of bacterial strains as MRSA or MSSA. Data analysis was performed with chi-square tests with Bonferroni correction. It was observed 55.6% of uncontaminated samples. Contamination was: 17.5% MRSA (5.9% of samples collected before patient attendance and 11.6% after); 39.3% MSSA (14.1% collected before and 25.2% after). The prevalence of MRSA and MSSA was significantly higher after patient care. Integrated Clinic represented the most contaminated attendance area (MRSA − 41.7%, MSSA − 51.2%), the chair arm rest was the most contaminated surface for MRSA (29.7%) and the dental spittoon the most contaminated surface for MSSA (23.5%). Although a low level of contamination was observed, dental clinics, through patients possibly carrying bacteria, may be reservoirs for MRSA and MSSA transmission, and might contribute to potential nosocomial infections.
Collapse
Affiliation(s)
- Eva Gonçalves
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Rui Carvalhal
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Rita Mesquita
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Joana Azevedo
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Maria João Coelho
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Ricardo Magalhães
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Maria Pia Ferraz
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Maria Conceição Manso
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal.,LAQV, REQUIMTE, University of Porto, Porto, Portugal
| | - Sandra Gavinha
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | - Cristina Pina
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| | - Inês Lopes Cardoso
- Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal.,FP-ENAS - UFP Energy, Environment and Health Research Unit, University Fernando Pessoa, Porto, Portugal
| |
Collapse
|
6
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
7
|
Merghni A, Dallel I, Noumi E, Kadmi Y, Hentati H, Tobji S, Ben Amor A, Mastouri M. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog 2017; 104:84-89. [DOI: 10.1016/j.micpath.2017.01.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/25/2022]
|
8
|
Plotkin BJ, Sigar IM, Tiwari V, Halkyard S. Determination of Biofilm Initiation on Virus-infected Cells by Bacteria and Fungi. J Vis Exp 2016. [PMID: 27501265 DOI: 10.3791/54162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The study of polymicrobial interactions across the taxonomic kingdoms that include fungi, bacteria and virus have not been previously examined with respect to how viral members of the microbiome affect subsequent microbe interactions with these virus-infected host cells. The co-habitation of virus with bacteria and fungi is principally present on the mucosal surfaces of the oral cavity and genital tract. Mucosal cells, particularly those with persistent chronic or persistent latent viral infections, could have a significant impact on members of the microbiome through virus alteration in number and type of receptors expressed. Modification in host cell membrane architecture would result in altered ability of subsequent members of the normal flora and opportunistic pathogens to initiate the first step in biofilm formation, i.e., adherence. This study describes a method for quantitation and visual examination of HSV's effect on the initiation of biofilm formation (adherence) of S. aureus and C. albicans.
Collapse
Affiliation(s)
| | - Ira M Sigar
- Department of Microbiology and Immunology, Midwestern University
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Midwestern University
| | - Scott Halkyard
- Department of Microbiology and Immunology, Midwestern University
| |
Collapse
|
9
|
Herpes Simplex Virus (HSV) Modulation of Staphylococcus aureus and Candida albicans Initiation of HeLa 299 Cell-Associated Biofilm. Curr Microbiol 2016; 72:529-37. [PMID: 26758707 PMCID: PMC4828481 DOI: 10.1007/s00284-015-0975-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/22/2015] [Indexed: 01/30/2023]
Abstract
Although herpes simplex virus type-1 (HSV-1), and type-2 (HSV-2), Staphylococcus aureus and Candida albicans co-habit the oral and genital mucosa, their interaction is poorly understood. We determined the effect HSV has on bacterial and/or fungal adherence, the initial step in biofilm formation. HeLa229 cells were infected with HSV-1 (KOS) gL86 or HSV-2 (KOS) 333gJ− at a multiplicity of infection (MOI) of 50 and 10. S. aureus (ATCC 25923) and/or C. albicans (yeast forms or germ tube forms) were co-incubated for 30 min (37 °C; 5 % CO2; 5:1 organism: HeLa cell ratio; n = 16) with virus-infected HeLa cells or uninfected HeLa cell controls. Post-incubation, the monolayers were washed (3x; PBS), lysed (RIPA), and the lysate plated onto Fungisel and/or mannitol salts agar for standard colony count. The level of HeLa-associated S. aureus was significantly decreased (P < 0.05) for both HSV-1- and HSV-2-infected cells, as compared to virus-free HeLa cell controls (38 and 59 % of control, respectively). In contrast, HSV-1 and HSV-2 significantly (P < 0.05) enhanced HeLa cell association of C. albicans yeast forms and germ tube approximately two-fold, respectively. The effect of S. aureus on germ tube and yeast form adherence to HSV-1- and HSV-2-infected cells was specific for the Candida phenotype tested. Our study suggests that HSV, while antagonist towards S. aureus adherence enhances Candida adherence. Furthermore, the combination of the three pathogens results in S. aureus adherence that is either unaffected, or partially restored depending on both the herpes viral species and the fungal phenotype present.
Collapse
|
10
|
Merghni A, Marzouki H, Hentati H, Aouni M, Mastouri M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr Res Transl Med 2015; 64:S0369-8114(15)00101-7. [PMID: 26657812 DOI: 10.1016/j.patbio.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Laurus nobilis L. is an aromatic herb with relevant medicinal properties due to its important chemical composition and its potential therapeutic effects. In this study, we investigate the chemical composition, the antibacterial and the antibiofilms activities of Tunisian L. nobilis L. essential oils against clinical Staphylococcus aureus strains. METHODS The chemical composition of L. nobilis L. essential oils was analysed by Gas Chromatography-Mass Spectrometry (GC-MS). The antibacterial activity of L. nobilis L. essential oils was evaluated in vitro against oral S. aureus (n=21) strains using broth microdilution method. The antibiofilm activity was assessed via Crystal Violet staining and MTT assays. RESULTS Our results revealed that GC-MS assay exhibited 1.8-Cineole, methyl eugenol and α-terpinyl acetate as the major compounds in the essential oils. Moreover, the essential oil from Sousse exhibited the best bactericidal activity (MICs values ranged from 3.91 to 15.62mgm-1). Furthermore, this oil showed a strong biofilm inhibition effect above 70%, from a low sub-inhibitory concentration (1/16×MIC). MTT assay revealed that both essential oils displayed an excellent antibiofilm activity with eradication percentages ranging from 79.6±2.27 to 95.2±0.56. CONCLUSION Our finding demonstrated that L. nobilis L. essential oils are able to inhibit oral S. aureus strains with important antibiofilm efficacy. It could have a promising role in the prevention of oral diseases.
Collapse
Affiliation(s)
- A Merghni
- Laboratory of infectious diseases and biological agents (LR99ES27), faculty of pharmacy, Monastir university, avenue Avicenne, 5000 Monastir, Tunisia.
| | - H Marzouki
- Laboratory of infectious diseases and biological agents (LR99ES27), faculty of pharmacy, Monastir university, avenue Avicenne, 5000 Monastir, Tunisia
| | - H Hentati
- Buccodental surgery department of Monastir dental clinic, laboratory of oral health and orofacial rehabilitation (LR12ES11), Monastir, Tunisia
| | - M Aouni
- Laboratory of infectious diseases and biological agents (LR99ES27), faculty of pharmacy, Monastir university, avenue Avicenne, 5000 Monastir, Tunisia
| | - M Mastouri
- Laboratory of infectious diseases and biological agents (LR99ES27), faculty of pharmacy, Monastir university, avenue Avicenne, 5000 Monastir, Tunisia; Laboratory of microbiology, university hospital of Fattouma Bourguiba, Monastir, Tunisia
| |
Collapse
|
11
|
Merghni A, Ben Nejma M, Dallel I, Tobji S, Ben Amor A, Janel S, Lafont F, Aouni M, Mastouri M. High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. Microb Pathog 2015; 91:61-7. [PMID: 26620082 DOI: 10.1016/j.micpath.2015.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
Orthodontic and other oral appliances act as reservoir of opportunistic pathogens that can easily become resistant to antibiotics and cause systemic infections. The aim of this study was to investigate the ability of Staphylococcus aureus strains isolated from healthy patients with orthodontic appliances, to adhere to biotic (HeLa cells) and abiotic surfaces (polystyrene and dental alloy). Adhesive ability to polystyrene was tested by crystal violet staining and quantitative biofilm production on dental alloy surfaces was evaluated by MTT reduction assay. In addition, the presence of icaA and icaD genes was achieved by polymerase chain reaction (PCR). Qualitative biofilm production revealed that 70.6% of strains were slime producers. The metabolic activity of S. aureus biofilms on dental alloy surfaces was high and did not differ between tested strains. Moreover, all the isolates were adhesive to HeLa cells and 94% of them harbor icaA and icaD genes. Considerable adhesion and internalization capacity to the epithelial HeLa cells and strong biofilm production abilities together, with a high genotypic expression of icaA/icaD genes are an important equipment of S. aureus to colonize orthodontic appliances and eventually to disseminate towards other body areas.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia.
| | - Mouna Ben Nejma
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Ines Dallel
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | - Samir Tobji
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | - Adel Ben Amor
- Dento-Facial Orthopedics Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | | | - Frank Lafont
- BioImaging Center Lille-FR3642, Lille, France; Cellular Microbiology and Physics of Infection Group, Center of Infection and Immunity of Lille: CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University, France
| | - Mahjoub Aouni
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Maha Mastouri
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Microbiology, University Hospital of Fattouma Bourguiba, Monastir, Tunisia
| |
Collapse
|
12
|
Castro A, Santos C, Meireles H, Silva J, Teixeira P. Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J Infect Public Health 2015; 9:153-60. [PMID: 26424093 DOI: 10.1016/j.jiph.2015.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Food handlers may constitute a reservoir of virulent strains of Staphylococcus aureus and may be vehicles of their transmission to food. One hundred and sixty-two volunteers were assessed for the presence of S. aureus on the hands and in the nose. S. aureus was isolated by routine procedures, and the isolates were tested for susceptibility against a panel of nine antimicrobial agents. The isolates were further characterized by SmaI-PFGE profiling and the presence of virulence factors. RESULTS The prevalence of S. aureus was 19.8% in the nose and 11.1% on the hands; 6.2% of the individuals carried S. aureus both in their noses and hands, and three individuals had the same strain (PFGE type) in the nose and on the hands. Although 82% of the isolates were resistant to at least one antibiotic, none demonstrated the presence of either mecA gene or resistance to oxacillin (none identified as MRSA). Sixty-eight percent of the isolates from the nose and hands possessed enterotoxin genes. This study revealed a high prevalence of antibiotic resistance and virulence determinants among the isolates, including not only classical and novel enterotoxin genes but also major virulence factors such as tst. Potential dissemination of these strains in the community is a matter of concern.
Collapse
Affiliation(s)
- Ana Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Santos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Helena Meireles
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Joana Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Paula Teixeira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal.
| |
Collapse
|
13
|
Merghni A, Ben Nejma M, Helali I, Hentati H, Bongiovanni A, Lafont F, Aouni M, Mastouri M. Assessment of adhesion, invasion and cytotoxicity potential of oral Staphylococcus aureus strains. Microb Pathog 2015; 86:1-9. [PMID: 26055540 DOI: 10.1016/j.micpath.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
The oral cavity is regarded as a relevant site for Staphylococcus aureus colonization. However, characterization of virulence mechanisms of oral S. aureus remains to be uncovered. In this study, twenty one S. aureus strains isolated from the oral cavity of Tunisian patients were screened for adherence, invasion and cytotoxicity against HeLa cells. In addition, the presence of adhesins (icaA, icaD, can, fnbA and fnbB) and α-hemolysin (hla) genes in each strain was achieved by polymerase chain reaction (PCR). Our finding revealed that oral S. aureus strains were able to adhere and invade epithelial cells, with variable degrees (P < 0.05). Moreover they exhibited either low (23.8%) or moderate (76.2%) cytotoxic effects. In addition 76.2% of strains were icaA and icaD positive and 90.5% harbor both the fnbA and the fnbB gene. While the cna gene was detected in 12 strains (57.2%). Furthermore, the hla gene encoding the α-toxin was found in 52.4% of the isolates. All these virulence factors give to S. aureus the right qualities to become a redoubtable pathogen associated to oral infections.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| | - Mouna Ben Nejma
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Imen Helali
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hajer Hentati
- Service de Médecine et chirurgie buccales, Clinique universitaire de médecine dentaire, Monastir, Tunisia
| | | | - Frank Lafont
- BioImaging Center Lille-Nord de France, Lille, France; Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University, France
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Maha Mastouri
- Laboratoire des Maladies Transmissible et Substances Biologiquement Actives, LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Laboratoire de Microbiologie, CHU Fatouma Bourguiba de Monastir, Tunisia
| |
Collapse
|