1
|
Aktuganov G, Lobov A, Galimzianova N, Gilvanova E, Kuzmina L, Milman P, Ryabova A, Melentiev A, Chetverikov S, Starikov S, Lopatin S. Comparative Potential of Chitinase and Chitosanase from the Strain Bacillus thuringiensis B-387 for the Production of Antifungal Chitosan Oligomers. BIOTECH 2025; 14:35. [PMID: 40407490 PMCID: PMC12101196 DOI: 10.3390/biotech14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/26/2025] Open
Abstract
The depolymerization of chitosan using chitinolytic enzymes is one of the most promising approaches for the production of bioactive soluble chitooligosaccharides (COS) due to its high specificity, environmental safety, mild reaction conditions, and potential for development. However, the comparative efficacy of bacterial chitinases and chitosanases in terms of yield, solubility, and antimicrobial activity of produced COS remains understudied. In this work, chitinase (73 kDa) and chitosanase (40 kDa) from the strain Bacillus thuringiensis B-387 (Bt-387) were purified using various chromatographic techniques and compared by their action on chitosan (DD 85%). The molecular mass and structure of generated COS was determined using TLC, LC-ESI-MS, HP-SEC, and C13-NMR techniques. Chitosanase converted the polymer more rapidly to short COS (GlcN2-GlcN4), than chitinase, and was more specific in its action on mixed bonds between GlcN and GlcNAc. Chitosanase needed a noticeably shorter incubation time and enzyme-substrate ratio than chitinase for production of larger oligomeric molecules (Mw 2.4-66.5 and 15.4-77.7 kDa, respectively) during controlled depolymerization of chitosan. Moreover, chitosanase-generated oligomers demonstrate better solubility and a higher antifungal activity in vitro against the tested plant pathogenic fungi. These features, as well as the high enzyme production and its simplified purification protocol, make chitosanase B-387 more suitable for the production of antifungal chitooligomers than chitinase.
Collapse
Affiliation(s)
- Gleb Aktuganov
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Alexander Lobov
- Ufa Institute of Chemistry, Ufa Federal Research Center of Russian Academy of Sciences, 71, Prospect Oktyabrya, 450054 Ufa, Russia;
| | - Nailya Galimzianova
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Elena Gilvanova
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Lyudmila Kuzmina
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Polina Milman
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Alena Ryabova
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Alexander Melentiev
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Sergey Chetverikov
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Sergey Starikov
- Ufa Institute of Biology, Ufa Federal Research Center of Russian Academy of Sciences, 69, Prospect Oktyabrya, 450054 Ufa, Russia; (N.G.); (E.G.); (L.K.); (P.M.); (A.R.); (A.M.); (S.C.); (S.S.)
| | - Sergey Lopatin
- Institute of Bioengineering of Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 7, bld. 1, 60 let Oktyabrya Prospect, 117312 Moscow, Russia;
| |
Collapse
|
2
|
Douka D, Spantidos TN, Tsalgatidou PC, Katinakis P, Venieraki A. Whole-Genome Profiling of Endophytic Strain B.L.Ns.14 from Nigella sativa Reveals Potential for Agricultural Bioenhancement. Microorganisms 2024; 12:2604. [PMID: 39770806 PMCID: PMC11678546 DOI: 10.3390/microorganisms12122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.Ns.14, isolated from Nigella sativa leaves, which demonstrated multiple plant growth-promoting properties. In vitro tests showed that B.L.Ns.14 supports plant growth, colonization, and tolerance to abiotic stress. The strain also exhibited antifungal activity against phytopathogens such as Rhizoctonia solani, Colletotrichum acutatum, Verticillium dahliae, and Fusarium oxysporum f. sp. radicis-lycopersici. Whole-genome analysis, supported by ANI and dDDH values, identified B.L.Ns.14 as Bacillus halotolerans. Genome mining revealed 128 active carbohydrate enzymes (Cazymes) related to endophytism and biocontrol functions, along with genes involved in phosphate solubilization, siderophore and IAA production, biofilm formation, and motility. Furthermore, genes for osmolyte metabolism, Na+/H+ antiporters, and stress response proteins were also identified. The genome harbors 12 secondary metabolite biosynthetic gene clusters, including those for surfactin, plipastatin mojavensin, rhizocticin A, and bacilysin, known for their antagonistic effects against fungi. Additionally, B.L.Ns.14 promoted Arabidopsis thaliana growth under both normal and saline conditions, and enhanced Solanum lycopersicum growth via seed biopriming and root irrigation. These findings suggest that Bacillus halotolerans B.L.Ns.14 holds potential as a biocontrol and plant productivity agent, warranting further field testing.
Collapse
Affiliation(s)
- Dimitra Douka
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Tasos-Nektarios Spantidos
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | | | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (D.D.); (T.-N.S.); (P.K.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
3
|
Zhang H, Chen J, Liu Y, Xu Q, Inam M, He C, Jiang X, Jia Y, Ma H, Kong L. Discovery of a novel antibacterial protein CB6-C to target methicillin-resistant Staphylococcus aureus. Microb Cell Fact 2022; 21:4. [PMID: 34983528 PMCID: PMC8725309 DOI: 10.1186/s12934-021-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC–MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 μg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yuehua Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Qijun Xu
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Muhammad Inam
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Xiuyun Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,Changchun Sci-Tech University, Shuangyang District, Changchun, 130600, China
| | - Yu Jia
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
4
|
The rhizosphere of Sulla spinosissima growing in abandoned mining soils is a reservoir of heavy metals tolerant plant growth-promoting rhizobacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Genomic and Metabolomic Insights into Secondary Metabolites of the Novel Bacillus halotolerans Hil4, an Endophyte with Promising Antagonistic Activity against Gray Mold and Plant Growth Promoting Potential. Microorganisms 2021; 9:microorganisms9122508. [PMID: 34946110 PMCID: PMC8704346 DOI: 10.3390/microorganisms9122508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
The endophytic bacterial strain Hil4 was isolated from leaves of the medicinal plant Hypericum hircinum. It exhibited antifungal activity against Botrytis cinerea and a plethora of plant growth promoting traits in vitro. Whole genome sequencing revealed that it belongs to Bacillus halotolerans and possesses numerous secondary metabolite biosynthetic gene clusters and genes involved in plant growth promotion, colonization, and plant defense elicitation. The Mojavensin cluster was present in the genome, making this strain novel among plant-associated B. halotolerans strains. Extracts of secreted agar-diffusible compounds from single culture secretome extracts and dual cultures with B. cinerea were bioactive and had the same antifungal pattern on TLC plates after bioautography. UHPLC-HRMS analysis of the single culture secretome extract putatively annotated the consecutively produced antimicrobial substances and ISR elicitors. The isolate also proved efficient in minimizing the severity of gray mold post-harvest disease on table grape berries, as well as cherry tomatoes. Finally, it positively influenced the growth of Arabidopsis thaliana Col-0 and Solanum lycopersicum var. Chondrokatsari Messinias after seed biopriming in vitro. Overall, these results indicate that the B. halotolerans strain Hil4 is a promising novel plant growth promoting and biocontrol agent, and can be used in future research for the development of biostimulants and/or biological control agents.
Collapse
|
6
|
Miljaković D, Marinković J, Balešević-Tubić S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020; 8:microorganisms8071037. [PMID: 32668676 PMCID: PMC7409232 DOI: 10.3390/microorganisms8071037] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
Collapse
Affiliation(s)
- Dragana Miljaković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
- Correspondence:
| | - Jelena Marinković
- Department of Microbiological Preparations, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Svetlana Balešević-Tubić
- Soybean Department, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| |
Collapse
|
7
|
Horak I, Engelbrecht G, Rensburg PJ, Claassens S. Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizingBacillusspecies as bionematicides. J Appl Microbiol 2019; 127:326-343. [PMID: 30739384 DOI: 10.1111/jam.14218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- I. Horak
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - G. Engelbrecht
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | | | - S. Claassens
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| |
Collapse
|
8
|
Purification and characterization of exo-β-1,4-glucosaminidase produced by chitosan-degrading fungus, Penicillium sp. IB-37-2A. World J Microbiol Biotechnol 2019; 35:18. [DOI: 10.1007/s11274-019-2590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
9
|
de Araújo NK, Pimentel VC, da Silva NMP, de Araújo Padilha CE, de Macedo GR, dos Santos ES. Recovery and purification of chitosanase produced byBacillus cereususing expanded bed adsorption and central composite design. J Sep Sci 2016; 39:709-16. [DOI: 10.1002/jssc.201500900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nathália Kelly de Araújo
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| | - Vanessa Carvalho Pimentel
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| | - Nayane Macedo Portela da Silva
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| | - Carlos Eduardo de Araújo Padilha
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| | - Gorete Ribeiro de Macedo
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| | - Everaldo Silvino dos Santos
- Department of Chemical Engineering, Technology Center; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| |
Collapse
|
10
|
Araújo NKD, Pagnoncelli MGB, Pimentel VC, Xavier MLO, Padilha CEA, Macedo GRD, Santos ESD. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography. Int J Biol Macromol 2016; 82:291-8. [DOI: 10.1016/j.ijbiomac.2015.09.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
|