1
|
Páez-Avilés C, Juanola-Feliu E, Punter-Villagrasa J, Del Moral Zamora B, Homs-Corbera A, Colomer-Farrarons J, Miribel-Català PL, Samitier J. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1514. [PMID: 27649201 PMCID: PMC5038787 DOI: 10.3390/s16091514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.
Collapse
Affiliation(s)
- Cristina Páez-Avilés
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Esteve Juanola-Feliu
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Jaime Punter-Villagrasa
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Beatriz Del Moral Zamora
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Antoni Homs-Corbera
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- IBEC-Institute of Bioengineering of Catalonia, Nanobioengineering Research Group, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
- CIBER-BBN-Biomedical Research Networking Centre for Bioengineering, Biomaterials and Nanomedicine, María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain.
| | - Jordi Colomer-Farrarons
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Pere Lluís Miribel-Català
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Josep Samitier
- Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- IBEC-Institute of Bioengineering of Catalonia, Nanobioengineering Research Group, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
- CIBER-BBN-Biomedical Research Networking Centre for Bioengineering, Biomaterials and Nanomedicine, María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain.
| |
Collapse
|
3
|
Imamura K, Takayama S, Saito A, Inoue E, Nakayama Y, Ogata Y, Shirakawa S, Nagano T, Gomi K, Morozumi T, Akiishi K, Watanabe K, Yoshie H. Evaluation of a novel immunochromatographic device for rapid and accurate clinical detection of Porphyromonas gingivalis in subgingival plaque. J Microbiol Methods 2015; 117:4-10. [PMID: 26159910 DOI: 10.1016/j.mimet.2015.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED An important goal for the improved diagnosis and management of infectious and inflammatory diseases, such as periodontitis, is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. The aim of this prospective multicenter study was to evaluate the clinical use of a novel immunochromatographic device with monoclonal antibodies for the rapid point-of-care detection and semi-quantification of Porphyromonas gingivalis in subgingival plaque. Sixty-three patients with chronic periodontitis and 28 periodontally healthy volunteers were subjected to clinical and microbiological examinations. Subgingival plaque samples were analyzed for the presence of P. gingivalis using a novel immunochromatography based device DK13-PG-001, designed to detect the 40k-outer membrane protein of P. gingivalis, and compared with a PCR-Invader method. In the periodontitis group, a significant strong positive correlation in detection results was found between the test device score and the PCR-Invader method (Spearman rank correlation, r=0.737, p<0.0001). The sensitivity, specificity, and positive and negative predictive values of the test device were 96.2%, 91.8%, 90.4% and 96.7%, respectively. The detection threshold of the test device was determined to be approximately 10(4) (per two paper points). There were significant differences in the bacterial counts by the PCR-Invader method among groups with different ranges of device scores. With a cut-off value of ≥0.25 in device score, none of periodontally healthy volunteers were tested positive for the subgingival presence of P. gingivalis, whereas 76% (n=48) of periodontitis subjects were tested positive. There was a significant positive correlation between device scores for P. gingivalis and periodontal parameters including probing pocket depth and clinical attachment level (r=0.317 and 0.281, respectively, p<0.01). The results suggested that the DK13-PG-001 device kit can be effectively used for rapid, chair-side detection and semi-quantification of P. gingivalis in subgingival plaque. TRIAL REGISTRATION UMIN Clinical Trials Registry (UMIN-CTR) UMIN000011943.
Collapse
Affiliation(s)
- K Imamura
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - S Takayama
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - A Saito
- Department of Periodontology, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
| | - E Inoue
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | - Y Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | - Y Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | - S Shirakawa
- Department of Periodontology, Tsurumi University, School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - T Nagano
- Department of Periodontology, Tsurumi University, School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - K Gomi
- Department of Periodontology, Tsurumi University, School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - T Morozumi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - K Akiishi
- Reagent R&D Department, Denka Seiken Co., Ltd., 1359-1, Kagamida, Kigoshi, Gosen-shi, Niigata 959-1695, Japan
| | - K Watanabe
- Showa Yakuhin Kako Co., Ltd, 4-12-15-19F Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - H Yoshie
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|