1
|
Stefanello TB, Cardinal KM, Orso C, Franceschi CH, Silva JP, Mann MB, Frazzon J, Moraes PO, Ribeiro AML. The impact of different levels of functional oil supplementation in combination with salinomycin on growth performance and intestinal microbiota of broilers undergoing Eimeria challenge: An analysis of dynamics. Res Vet Sci 2024; 172:105249. [PMID: 38579633 DOI: 10.1016/j.rvsc.2024.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.
Collapse
Affiliation(s)
- Thaís Bastos Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kátia Maria Cardinal
- Department of Animal Science, Instituto Federal Farroupilha, Alegrete, RS, Brazil
| | - Catiane Orso
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Jéssica Pereira Silva
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Micheli Bertoni Mann
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jeverzon Frazzon
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Priscila Oliveira Moraes
- Department of Animal Science and Rural Development, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
2
|
Li S, Li S, Liu S, Lu S, Li J, Cheng S, Zhang S, Huang S, Li J, Jian F. Portulaca oleracea exhibited anti-coccidian activity, fortified the gut microbiota of Hu lambs. AMB Express 2024; 14:50. [PMID: 38700828 PMCID: PMC11068709 DOI: 10.1186/s13568-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidia of the genus Eimeria are important pathogens that cause coccidiosis in livestock and poultry. Due to the expansion of intensive farming, coccidiosis has become more difficult to control. In addition, the continued use of anti-coccidiosis drugs has led to drug resistance and residue. Some herbs used in traditional Chinese medicine (TCM) have been shown to alleviate the clinical symptoms of coccidiosis, while enhancing immunity and growth performance (GP) of livestock and poultry. Previous in vitro and in vivo studies have reported that the TCM herb Portulaca oleracea exhibited anti-parasitic activities. In total, 36 female Hu lambs were equally divided into six treatment groups: PL (low-dose P. oleracea), PH (high-dose P. oleracea), PW (P. oleracea water extract), PE (P. oleracea ethanol extract), DIC (diclazuril), and CON (control). The treatment period was 14 days. The McMaster counting method was used to evaluate the anti-coccidiosis effects of the different treatments. Untargeted metabolomics and 16S rRNA gene sequencing were used to investigate the effects of treatment on the gut microbiota (GM) and GP. The results showed that P. oleracea ameliorated coccidiosis, improved GP, increased the abundances of beneficial bacteria, and maintained the composition of the GM, but failed to completely clear coccidian oocysts. The Firmicutes to Bacteroides ratio was significantly increased in the PH group. P. oleracea increased metabolism of tryptophan as well as some vitamins and cofactors in the GM and decreased the relative content of arginine, tryptophan, niacin, and other nutrients, thereby promoting intestinal health and enhancing GP. As an alternative to the anti-coccidiosis drug DIC, P. oleracea effectively inhibited growth of coccidia, maintained the composition of the GM, promoted intestinal health, and increased nutrient digestibility.
Collapse
Affiliation(s)
- Shiheng Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Senyang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, China
| | - Shuaiqi Liu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shunli Lu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Jing Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shuqi Cheng
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shucheng Huang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Junqiang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
3
|
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens. mSystems 2023; 8:e0123922. [PMID: 36719211 PMCID: PMC9948737 DOI: 10.1128/msystems.01239-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3+ T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae, Lachnospiraceae, and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Collapse
|
4
|
Chapman HD, Rathinam T. Focused review: The role of drug combinations for the control of coccidiosis in commercially reared chickens. Int J Parasitol Drugs Drug Resist 2022; 18:32-42. [PMID: 35066424 PMCID: PMC8789515 DOI: 10.1016/j.ijpddr.2022.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
Abstract
A survey of drug combinations employed by the poultry industry indicates that they have played an important role in the control of coccidiosis in chickens. The mode of action of their component drugs is described. Advantages that accrue from their use may include a reduction in potential toxicity, a broadening of their spectrum of activity against different species of Eimeria, activity against different stages of the life cycle, and improved efficacy due to synergism between component drugs. Integration of management procedures involving rotation of drug combinations with vaccination is desirable because this has been shown to result in a restoration of drug sensitivity where drug resistance is present and could contribute to the sustainable control of coccidiosis. Threats to the future use of the most widely used combinations, those that include ionophores, stem from the recent desire to eliminate antibiotics from poultry feeds.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Thilak Rathinam
- Huvepharma Inc., 525 Westpark Dr, Ste 230, Peachtree City, GA, 30269, USA
| |
Collapse
|
5
|
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd El-Wahab A, Visscher C, El-Seedi HR, Huber C, Hafez HM, Eisenreich W, Tellez-Isaias G. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022; 10:microorganisms10020395. [PMID: 35208851 PMCID: PMC8877156 DOI: 10.3390/microorganisms10020395] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has been designated as a hidden metabolic ‘organ’ because of its enormous impact on host metabolism, physiology, nutrition, and immune function. The connection between the intestinal microbiota and their respective host animals is dynamic and, in general, mutually beneficial. This complicated interaction is seen as a determinant of health and disease; thus, intestinal dysbiosis is linked with several metabolic diseases. Therefore, tractable strategies targeting the regulation of intestinal microbiota can control several diseases that are closely related to inflammatory and metabolic disorders. As a result, animal health and performance are improved. One of these strategies is related to dietary supplementation with prebiotics, probiotics, and phytogenic substances. These supplements exert their effects indirectly through manipulation of gut microbiota quality and improvement in intestinal epithelial barrier. Several phytogenic substances, such as berberine, resveratrol, curcumin, carvacrol, thymol, isoflavones and hydrolyzed fibers, have been identified as potential supplements that may also act as welcome means to reduce the usage of antibiotics in feedstock, including poultry farming, through manipulation of the gut microbiome. In addition, these compounds may improve the integrity of tight junctions by controlling tight junction-related proteins and inflammatory signaling pathways in the host animals. In this review, we discuss the role of probiotics, prebiotics, and phytogenic substances in optimizing gut function in poultry.
Collapse
Affiliation(s)
- Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.A.S.); (G.T.-I.)
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (A.A.E.-W.); (C.V.)
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE 75124 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Claudia Huber
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbegstr. 4, 85748 Garching, Germany; (C.H.); (W.E.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Correspondence: (A.A.S.); (G.T.-I.)
| |
Collapse
|
6
|
Shetshak MA, Suleiman MM, Jatau ID, Ameh MP, Akefe IO. Anticoccidial efficacy of Garcinia kola (Heckel H.) against experimental Eimeria tenella infection in chicks. J Parasit Dis 2021; 45:1034-1048. [PMID: 34789987 PMCID: PMC8556448 DOI: 10.1007/s12639-021-01389-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
There is a need to advance commercial poultry production to cater to the essential protein needs of an ever-increasing population, however, the rampant occurrence of coccidiosis infection poses a threat to this achievement. This study evaluated the in vivo anticoccidial activities of the extracts and fractions of Garcinia kola against experimental Eimeria tenella infection using broiler chickens as experimental subjects. A total of 40 broiler chicks were experimentally infected with E. tenella and assigned randomly into five groups consisting of eight chicks each. Three days post experimental infection groups I and II were administered orally with tween 80 (0.8%) and Amprolium (30 mg/kg) and served as untreated and treated control groups, respectively whereas Groups III, IV, and V were administered orally with crude methanol extract (CME) at doses of 200, 400 and 600 mg/kg, respectively, for five consecutive days. Daily weight gains were recorded and faecal oocysts per gram (OPG) counts were made by the McMaster Egg counting technique. Blood samples from each experimental group were collected on days 0, 3, 6, and 8 for haematological examination. In the acute toxicity studies, the CME of G. kola did not produce any toxic effect or mortality at doses between 10 and 5000 mg/kg. The CME G. kola was then considered safe and the LD50 was assumed to be > 5000 mg/kg. Graded doses of CME of G. kola considerably (P < 0.05) improved body weight gain and decreased OPG in a dose-depended manner. There was also significant improvement in the Packed Cell Volume (PCV), Red Blood Cell (RBC) and White Blood Cell (WBC) counts upon treatment with the graded doses of CME of G. kola. Besides, G. kola significantly decreased histopathological lesions in the caecum. The results of this study indicates that G. kola may provide beneficial effects against E. tenella-induced coccidiosis in broiler chickens.
Collapse
Affiliation(s)
- M A Shetshak
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - M M Suleiman
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - I D Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | - M P Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - I O Akefe
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| |
Collapse
|
7
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 3: Amprolium. EFSA J 2021; 19:e06854. [PMID: 34729083 PMCID: PMC8546521 DOI: 10.2903/j.efsa.2021.6854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The specific concentrations of amprolium in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for amprolium, it was not possible to conclude the assessment. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of amprolium in feed that showed to have an effect on growth promotion/increased yield were reported. The lack of antibacterial activity at clinically relevant concentrations for amprolium suggests that further studies relating to bacterial resistance are not a priority.
Collapse
|
8
|
Nguyen BT, Flores RA, Cammayo PLT, Kim S, Kim WH, Min W. Anticoccidial Activity of Berberine against Eimeria-Infected Chickens. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:403-408. [PMID: 34470092 PMCID: PMC8413861 DOI: 10.3347/kjp.2021.59.4.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022]
Abstract
Avian coccidiosis has a major economic impact on the poultry industry, it is caused by 7 species of Eimeria, and has been primarily controlled using chemotherapeutic agents. Due to the emergence of drug-resistant strains, alternative control strategies are needed. We assessed anticoccidial effects of berberine-based diets in broiler chickens following oral infection with 5 Eimeria species (E. acervulina, E. maxima, E. tenella, E. mitis, and E. praecox). When 0.2% berberine, a concentration that does not affect weight gain, was added to the diet, the 4 groups infected with E. acervulina, E. tenella, E. mitis, or E. praecox showed significant reductions in fecal oocyst shedding (P<0.05) compared to their respective infected and untreated controls. In chickens treated 0.5% berberine instead of 0.2% and infected with E. maxima, fecal oocyst production was significantly reduced, but body weight deceased, indicating that berberine treatment was not useful for E. maxima infection. Taken together, these results illustrate the applicability of berberine for prophylactic use to control most Eimeria infections except E. maxima. Further studies on the mechanisms underlying the differences in anticoccidial susceptibility to berberine, particularly E. maxima, are remained.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Rochelle Alipio Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Paula Leona Taymen Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Woo Hyun Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
9
|
Shetshak MA, Jatau ID, Suleiman MM, Ameh MP, Gabriel A, Akefe IO. In Vitro Anticoccidial Activities of the Extract and Fractions of Garcinia kola (Heckel h.) Against Eimeria tenella Oocyst. Recent Pat Biotechnol 2021; 15:76-84. [PMID: 33511943 DOI: 10.2174/1872208315666210129095213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Commercial poultry farming is expanding every day and contributing to the provision of affordable and high-quality protein. However, this sector is confronted with many diseases of which coccidiosis is among the most important. There are many registered patents affirming the health benefits of Garcinia kola in poultry. OBJECTIVE Evaluation of in vitro anticoccidial activities of the extracts and fractions of Garcinia kola against Eimeria tenella oocyst was carried out. METHODS Fresh seeds of G. kola were collected, dried under shade at room temperature, and pulverized using a mortar and a pestle. The powder was exhaustively extracted with a soxhlet apparatus using 70% methanol, and the crude methanol extract (CME) was concentrated to dryness using a rotary evaporator. The CME was further partitioned using butanol, ethylacetate, and n-hexane. The CME, butanol fraction (BTF), ethylacetate fraction (EAF), and hexane fraction (HXF) were concentrated in vacuo and tested for the presence of phytochemical constituents using standard procedures. Similarly, the CME, butanol, ethyl acetate, and hexane fractions were evaluated in vitro for oocyst sporulation inhibition. RESULTS Phytochemical analysis revealed the presence of cardiac glycosides, saponins, carbohydrates, steroids/triterpenes, tannins, flavonoids, and alkaloids in the CME and BTF. The EAF contains all the metabolites mentioned except saponins. Similarly, HXF contains only cardiac glycosides, tannins, and steroids/ triterpenes. The CME and BTF caused a concentration-dependent increase in the inhibition of sporulation of unsporulated oocysts of E. tenella. In the acute toxicity studies, the CME did not produce any toxic effect or mortality at doses between 10 and 5000 mg/kg. The CME was then considered safe, and the LD50 was assumed to be >5000 mg/kg. CONCLUSION The data obtained in this study suggested that the crude methanol extract (CME) of G. kola could be an appreciable beneficial effect as an anticoccidial agent against Eimeria tenella oocyst.
Collapse
Affiliation(s)
- Manji A Shetshak
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Isa D Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammed M Suleiman
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew P Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Ada Gabriel
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Isaac O Akefe
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Guo L, Wang Z, Xu X, Xu L, Wang Z, Kuang H, Xu C. An ultrasensitive fluorescent paper sensor for fast screening of berberine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02210e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Berberine (BBR) is a highly effective animal feed additive, but it also has adverse side effects on animals and causes potential food safety issues. Based on BBR antibody preparation, fluorescent immunochromatography assay was established for quantitative detection of BBR in feed samples.
Collapse
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Zhengyou Wang
- Standards & Quality Center of National Food and Strategic Reserves Administration
- Xicheng District
- 100037 Beijing
- China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University
- China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology
- Jiangnan University
- Wuxi
| |
Collapse
|
11
|
Zhu C, Huang K, Bai Y, Feng X, Gong L, Wei C, Huang H, Zhang H. Dietary supplementation with berberine improves growth performance and modulates the composition and function of cecal microbiota in yellow-feathered broilers. Poult Sci 2020; 100:1034-1048. [PMID: 33518062 PMCID: PMC7858044 DOI: 10.1016/j.psj.2020.10.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effect of berberine (BBR) on growth performance and composition and function of cecal microbiota in yellow-feathered broilers. A total of 360 1-day-old female broilers were assigned to 3 dietary treatments, each with 6 replicates of 20 birds. The dietary treatments consisted of a basal diet as negative control (NC), basal plus 200 mg/kg oxytetracycline calcium and 250 mg/kg nasiheptide as an antibiotic positive control (PC), and basal plus 250 mg/kg BBR. On day 21, 42, and 63, one chicken from each replicate was randomly selected for blood collection and cecal sampling. The 16S rRNA sequencing technology was used to analyze the community composition and function of cecal microbiota. Dietary supplementation with antibiotics or BBR increased the final body weight (BW) at day 63 and the average daily gain (ADG) during 1 to 21 d compared with the NC (P < 0.05). Supplementation with BBR improved the average daily feed intake (ADFI) at 22 to 42 d, 43 to 63 d, and 1 to 63 d (P < 0.05). Feed efficiency, indicated by feed to gain ratio (F/G), increased with PC during day 1 to 21 compared with NC (P < 0.05). The plasma concentrations of total protein at 42 d and uric acid at 21 d were increased, whereas creatine concentration at 63 d was decreased by BBR treatment (P < 0.05). The Chao 1 and Shannon index representing microbial α-diversity was reduced by BBR treatment (P < 0.05). The abundances of phylum Firmicutes and genera Lachnospiraceae, Lachnoclostridium, Clostridiales, and Intestinimonas were decreased, whereas the abundances of phylum Bacteroidetes and genus Bacteroides were increased with BBR treatment. Functional prediction of microbiota revealed that BBR treatment enriched pathways related to metabolism, organismal systems, and genetic information processing, especially DNA replication. The abundance of phylum Bacteroidetes, and genera Bacteroides and Lactobacillus in cecal contents were positively correlated with broiler growth performance. These results demonstrated dietary BBR supplementation improved the growth performance of yellow-feathered broilers, and was closely related to the significant changes in cecal microbiota composition.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Kaiyong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Li Gong
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Chuangxin Wei
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hanze Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
12
|
Abstract
Treatment of avian renal disease relies on supportive care, such as fluid therapy and nutritional support. Analgesia and adaptations of the environment are indicated in cases of renal disease associated with painful joints. Other treatments vary with the underlying etiology and may include systemic antibiotics, antifungal therapy, vitamin A supplementation, or chelation therapy.
Collapse
Affiliation(s)
- Ophélie Cojean
- Zoological Medicine Service, Clinique vétérinaire Benjamin Franklin, 38 rue du Danemark, ZA Porte Océane II, Brech 56400, France
| | - Sylvain Larrat
- Zoological Medicine Service, Clinique vétérinaire Benjamin Franklin, 38 rue du Danemark, ZA Porte Océane II, Brech 56400, France
| | - Claire Vergneau-Grosset
- Service de médecine zoologique, Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada.
| |
Collapse
|
13
|
Inhibitory Effect of Berberine on Broiler P-glycoprotein Expression and Function: In Situ and In Vitro Studies. Int J Mol Sci 2019; 20:ijms20081966. [PMID: 31013627 PMCID: PMC6515058 DOI: 10.3390/ijms20081966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Overcoming P-glycoprotein (P-gp) efflux is a strategy to improve the absorption and pharmacokinetics of its substrate drugs. Berberine inhibits P-gp and thereby increases the bioavailability of the P-gp substrate digoxin in rodents. However, the effects of berberine on P-gp in chickens are still unclear. Here, we studied the role of berberine in modulating broilers P-gp expression and function through both in situ and in vitro models. In addition, molecular docking was applied to analyze the interactions of berberine with P-gp as well as with chicken xenobiotic receptor (CXR). The results showed that the mRNA expression levels of chicken P-gp and CXR decreased in the ileum following exposure to berberine. The absorption rate constant of rhodamine 123 increased after berberine treatment, as detected using an in situ single-pass intestinal perfusion model. Efflux ratios of P-gp substrates (tilmicosin, ciprofloxacin, clindamycin, ampicillin, and enrofloxacin) decreased and the apparent permeability coefficients increased after co-incubation with berberine in MDCK-chAbcb1 cell models. Bidirectional assay results showed that berberine could be transported by chicken P-gp with a transport ratio of 4.20, and this was attenuated by verapamil (an inhibitor of P-gp), which resulted in a ratio of 1.13. Molecular docking revealed that berberine could form favorable interactions with the binding pockets of both CXR and P-gp, with docking scores of −7.8 and −9.5 kcal/mol, respectively. These results indicate that berberine is a substrate of chicken P-gp and down-regulates P-gp expression in chicken tissues, thereby increasing the absorption of P-gp substrates. Our findings suggest that berberine increases the bioavailability of other drugs and that drug-drug interactions should be considered when it is co-administered with other P-gp substrates with narrow therapeutic windows.
Collapse
|
14
|
Anticoccidial activity of fruit peel of Punica granatum L. Microb Pathog 2018; 116:78-83. [PMID: 29339307 DOI: 10.1016/j.micpath.2018.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022]
Abstract
In the interests of food safety and public health, plants and their compounds are now re-emerging as an alternative approach to treat parasitic diseases. Here, we studied the anticoccidial effect of different solvent extracts of the fruit peel of Punica granatum-a commercial waste from pomegranate juice industries. The hope underlying these experiments was to find a sustainable natural product for controlling coccidiosis. The plant extracts were prepared using solvents of different polarity. Acute oral toxicity study was first carried out to see the safety of crude extracts. A high dose of crude extracts (300 mg/kg body weight) was tested for possession of anticoccidial activity against experimentally induced coccidial infection in broiler chicken. Activity was measured in comparison to the reference drug amprolium on the basis of oocyst output reduction, mean weight gain of birds and feed conversion ratio. Oocyst output was measured using Mc-Masters counting technique. Acute oral toxicity study showed that crude extracts of P. granatum are safe up to dosage of 2000 mg/kg body weight. LD50 was not determined as mortalities were not recorded in any of the five groups of chicken. For anticoccidial activity crude methanolic extract (CME) of the fruit peel of P. granatum showed the maximum effect as evident by oocyst output reduction (92.8 ± 15.3), weight gain of birds (1403.0 ± 11.9 g) and feed conversion ratio (1.66 ± 0.04), thereby affirming the presence of alcohol soluble active ingredients in the plant. We also tested different doses (100-400 mg/kg body weight) of the CME of the fruit peel of P. granatum, the most active extract on E. tenella and observed a dose dependent effect. From the present study it can be concluded that alcoholic extract of the fruit peel of P. granatum has significant potential to contribute to the control of coccidian parasites of chicken.
Collapse
|
15
|
Ahad S, Tanveer S, Nawchoo IA, Malik TA. Anticoccidial activity of Artemisia vestita (Anthemideae, Asteraceae) - a traditional herb growing in the Western Himalayas, Kashmir, India. Microb Pathog 2017; 104:289-295. [PMID: 28159660 DOI: 10.1016/j.micpath.2017.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/29/2017] [Accepted: 01/29/2017] [Indexed: 11/25/2022]
Abstract
Coccidiosis, caused by various species of genus Eimeria, is a major parasitic disease in chicken. The increasing resistance of these parasites to currently used anticoccidial drugs has stimulated the search for new methods of control. As part of this effort, a study was designed to see the anticoccidial effect of different solvent extracts of Artemisia vestita-a traditional herb growing in Kashmir Himalayas. The plant extracts were prepared using different solvents. Preliminary toxicity study was first carried out to see the safety of crude plant extracts. A high dose of crude extracts (300 mg/kg body weight) was tested for possession of anticoccidial activity against experimentally induced coccidial infection in broiler chicken. Activity was measured in comparison to the reference drug amprolium on the basis of oocyst output reduction, mean weight gain of birds and feed conversion ratio. Oocyst output was measured using Mc-Masters counting technique. Preliminary toxicity study showed that crude extracts of A. vestita are safe up to dosage of 2000 mg/kg body weight. LD50 was not determined as mortalities were not recorded in any of the five groups of chicken. For anticoccidial activity crude methanolic extract (CME) of A. vestita showed the maximum effect as evident by oocyst output reduction (71.5 ± 12.2), weight gain of birds (1406.4 ± 12.2) and feed conversion ratio (1.58 ± 0.06), thereby affirming the presence of alcohol soluble active ingredients in the plant. We also tested different doses (100-400 mg/kg body weight) of the CME of A. vestita, the most active extract on E. tenella and observed a dose dependent effect. From the present study it can be concluded that alcoholic extract of A. vestita has the immense potential to contribute to the control of coccidian parasites of chicken. Our results corroborate the use of genus Artemisia and could justify its use in folk medicine for treatment of parasitic diseases.
Collapse
Affiliation(s)
- Shazia Ahad
- Department of Zoology, University of Kashmir, Srinagar 190006, J&K, India.
| | - Syed Tanveer
- Department of Zoology, University of Kashmir, Srinagar 190006, J&K, India
| | | | - Tauseef Ahmad Malik
- Centre of Research for Development, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
16
|
Malik TA, Kamili AN, Chishti MZ, Ahad S, Tantry MA, Hussain PR, Johri RK. Breaking the resistance of Escherichia coli: Antimicrobial activity of Berberis lycium Royle. Microb Pathog 2016; 102:12-20. [PMID: 27888048 DOI: 10.1016/j.micpath.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
Abstract
The antimicrobial activity of root bark of Berberis lycium and its principal component berberine was tested against a panel of microbial strains using agar well diffusion test and further analyzed using micro-broth dilution method. Preliminary analysis, on the basis of zone of Inhibition (ZOI) showed that the methanolic extract of B. lycium was highly effective against Escherichia coli (ZOI 41 ± 1 mm). Among the bacterial strains E. coli was found to be most susceptible and among fungi Candida albicans was the most susceptible for berberine as well as the crude methanolic extract of the plant. Methanolic extract of the plant was more effective for E. coli (MIC 1.7 ± 1.18; MBC 2.4 ± 1.18) than berberine (MIC 3.5 ± 0.57) (p < 0.05), whereas berberine was more effective than crude extracts for C. albicans. In addition, E. coli showed the development of resistant colonies after 72 h when tested with berberine but the development of such colonies was not observed with the methanolic extract of the plant. This could be due to the presence of resistance breaking molecules in the crude methanolic extract of B. lycium. Also the MIC index of crude methanolic extract was 1.39 for E. coli, which showed the mode of action to be bactericidal. HPLC analysis revealed the presence of berberine at highest concentration in methanolic extract of the plant, followed by aqueous extract. Potentiation of this berberine by resistance breaking molecules in the crude extract could be a possible explanation for its strong effectiveness.
Collapse
Affiliation(s)
- Tauseef Ahmad Malik
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India.
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - M Z Chishti
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - Shazia Ahad
- Department of Zoology, University of Kashmir, Srinagar, J&K, India
| | - Mudasir A Tantry
- Centre of Research for Development, University of Kashmir, Srinagar, J&K, India
| | - P R Hussain
- Astrophysical Sciences Division, Nuclear Research Laboratory, BARC, Zakura, Srinagar, J&K, India
| | - R K Johri
- PK-PD Toxicology Division, Indian Institute of Integrative Medicine (CSIR), Jammu-Tawi, J&K, India
| |
Collapse
|