1
|
Zhang D, Xu S, Wu H, Liu J, Wang Y, Zhu G. Melatonin Is Neuroprotective in Escherichia coli Meningitis Depending on Intestinal Microbiota. Int J Mol Sci 2022; 24:ijms24010298. [PMID: 36613745 PMCID: PMC9820133 DOI: 10.3390/ijms24010298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Avian meningitis Escherichia coli (E. coli) can cause acute bacterial meningitis which threatens poultry health, causes great economic losses in the poultry industry, and has recently been speculated as a potential zoonotic pathogen. Melatonin can counteract bacterial meningitis-induced disruption of the blood-brain barrier (BBB), neuroinflammation, and reduce mortality. There are increasing data showing that melatonin's beneficial effects on bacterial meningitis are associated with intestinal microbiota. In this study, our data showed that melatonin alleviated neurological symptoms, enhanced survival rate, protected the integrity of the BBB, reduced the bacterial load in various tissues and blood, and inhibited inflammation and neutrophil infiltration of brain tissue in an APEC TW-XM-meningitis mice model. The results of 16S rRNA showed that melatonin pretreatment significantly maintained the composition of intestinal microbiota in APEC-meningitis mice. The abundance and diversity of intestinal microbiota were disturbed in APEC TW-XM-meningitis mice, with a decreased ratio of Firmicutes to Bacteroides and an increased the abundance of Proteobacteria. Melatonin pretreatment could significantly improve the composition and abundance of harmful bacteria and alleviate the decreased abundance of beneficial bacteria. Importantly, melatonin failed to affect the meningitis neurologic symptoms caused by APEC TW-XM infection in antibiotic-pretreated mice. In conclusion, the results suggest that melatonin can effectively prevent meningitis induced by APEC TW-XM infection in mice, depending on the intestinal microbiota. This finding is helpful to further explore the specific target mechanism of melatonin-mediated intestinal microbiota in the prevention of and protection against Escherichia coli meningitis.
Collapse
Affiliation(s)
- Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hucong Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yiting Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
2
|
Li D, Qian X, Liu X, Sun Y, Ren J, Xue F, Liu Q, Tang F, Dai J. orf6 and orf10 in Prophage phiv142-3 Enhance the Iron-Acquisition Ability and Resistance of Avian Pathogenic Escherichia coli Strain DE142 to Serum. Front Vet Sci 2020; 7:588708. [PMID: 33324701 PMCID: PMC7724020 DOI: 10.3389/fvets.2020.588708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), is the causative agent of avian colibacillosis, a disease that causes huge economic losses in the poultry industry and is characterized by infection through respiratory tract colonization followed by bacteraemia. A previous study in our lab demonstrated that phiv142-3 enhanced the survival ability of APEC strain DE142 in chickens serum. However, the mechanism of this affect has not been completely revealed. Here, we analyzed the transcriptional level of the prophage phiv142-3 region in DE142 when grown in chicken serum. Several upregulated genes attracted our attention, and a series of mutants were constructed. Deletion of orf6 or orf10 from phiv142-3 led to lower yields compared with WT after cultivation in serum for 10 h (P < 0.05). Furthermore, avian infection assays showed that compared with WT, the bacterial loads in blood and heart tissue of chickens challenged with DE142Δorf6 were decreased to 3.9 and 13%, while the bacterial burden in blood and heart from chickens infected with DE142Δorf10 was decreased to 7.2 and 8%, respectively (P < 0.05). DE142Δorf6 showed an obviously attenuated growth rate in the logarithmic phase when cultured in iron-deficient medium, and the transcription level of the iutA gene decreased to 43% (P < 0.05). The bactericidal assays showed that the survival of the mutant DE142Δorf10 was ~60% compared with WT in 50% chicken serum. The K1 capsule-related genes (kpsF, kpsE, kpsC, and kpsM) were down-regulated nearly 2-fold in DE142Δorf10 (P < 0.01). Together, these results suggested that orf6 affects growth by contributing to the uptake ability of iron, while orf10 increases resistance to serum by upregulating K1 capsule-related genes.
Collapse
Affiliation(s)
- Dezhi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Qian
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Tang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Wyrsch ER, Chowdhury PR, Jarocki VM, Brandis KJ, Djordjevic SP. Duplication and diversification of a unique chromosomal virulence island hosting the subtilase cytotoxin in Escherichia coli ST58. Microb Genom 2020; 6:e000387. [PMID: 32519937 PMCID: PMC7371111 DOI: 10.1099/mgen.0.000387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The AB5 cytotoxins are important virulence factors in Escherichia coli. The most notable members of the AB5 toxin families include Shiga toxin families 1 (Stx1) and 2 (Stx2), which are associated with enterohaemorrhagic E. coli infections causing haemolytic uraemic syndrome and haemorrhagic colitis. The subAB toxins are the newest and least well understood members of the AB5 toxin gene family. The subtilase toxin genes are divided into a plasmid-based variant, subAB1, originally described in enterohaemorrhagic E. coli O113:H21, and distinct chromosomal variants, subAB2, that reside in pathogenicity islands encoding additional virulence effectors. Previously we identified a chromosomal subAB2 operon within an E. coli ST58 strain IBS28 (ONT:H25) taken from a wild ibis nest at an inland wetland in New South Wales, Australia. Here we show the subAB2 toxin operon comprised part of a 140 kb tRNA-Phe chromosomal island that co-hosted tia, encoding an outer-membrane protein that confers an adherence and invasion phenotype and additional virulence and accessory genetic content that potentially originated from known virulence island SE-PAI. This island shared a common evolutionary history with a secondary 90 kb tRNA-Phe pathogenicity island that was presumably generated via a duplication event. IBS28 is closely related [200 single-nucleotide polymorphisms (SNPs)] to four North American ST58 strains. The close relationship between North American isolates of ST58 and IBS28 was further supported by the identification of the only copy of a unique variant of IS26 within the O-antigen gene cluster. Strain ISB28 may be a historically important E. coli ST58 genome sequence hosting a progenitor pathogenicity island encoding subAB.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Veronica M. Jarocki
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate J. Brandis
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington 2052 NSW, Australia
| | - Steven P. Djordjevic
- ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|