1
|
Rana K, Thaper D, Vander H, Prabha V. Pseudomonas aeruginosa: A risk factor for fertility in male mice. Reprod Biol 2018; 18:450-455. [PMID: 30181055 DOI: 10.1016/j.repbio.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
The present study was designed to evaluate the effect of P. aeruginosa on reproductive potential of male mice via a series of in vitro and in vivo experiments. In vitro studies involved sperm parameters, Mg2+ATPase activity and acrosome status. In vivo study employed male mice which in the right vas deferens received 20 μl of either PBS (Group I) or 104 cfu of P. aeruginosa (Group II). The animals were sacrificed on day 3, 7 and 14 and various parameters viz. body weight, TSI (%), bacterial load, spermiogram {i.e. sperm count, motility (%), viability (%) and morphology}, lipid peroxidation and tissue histopathology were evaluated. The results revealed that cell free supernatant of P. aeruginosa resulted in reduced motility, viability, Mg2+dependent ATPase activity and premature acrosomal loss of mouse spermatozoa in vitro. In vivo study showed that in comparison to group I, group II revealed significant alterations in all the parameters on all the days of sacrifice. Further, when reproductive organs of right and left side of mice in group II were compared, the right side demonstrated more devastating effects in terms of altered TSI (%) of testis and cauda epididymis, higher bacterial counts, azoospermia, increased malondialdehyde levels and severe inflammation in tissue histopathology in comparison to left side where bacteria disseminated in reduced numbers, thereby, resulting in insignificant changes in TSI (%), spermiogram, malondialdehyde levels and tissue histology. This study demonstrates that the colonization of P. aeruginosa in male genital tract could be a risk factor for fertility.
Collapse
Affiliation(s)
- Kalpana Rana
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Deepali Thaper
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Harpreet Vander
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|