1
|
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Pseudomonas aeruginosa's Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics (Basel) 2025; 14:353. [PMID: 40298491 PMCID: PMC12024412 DOI: 10.3390/antibiotics14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity and mortality. This opportunistic pathogen can thrive in various environments, making it a public health concern worldwide. P. aeruginosa's genomic pool is highly dynamic and diverse, with a pan-genome size ranging from 5.5 to 7.76 Mbp. This versatility arises from its ability to acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile genetic elements (MGEs). These MGEs, collectively known as the mobilome, facilitate the spread of genes encoding resistance to antimicrobials (ARGs), resistance to heavy metals (HMRGs), virulence (VGs), and metabolic functions (MGs). Of particular concern are the acquired carbapenemase genes (ACGs) and other β-lactamase genes, such as classes A, B [metallo-β-lactamases (MBLs)], and D carbapenemases, which can lead to increased antimicrobial resistance. This review emphasizes the importance of the mobilome in understanding antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Katerina Tsergouli
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
2
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Hernández-Ramírez KC, Valle-Maldonado MI, Patiño-Medina JA, Calo S, Jácome-Galarza IE, Garre V, Meza-Carmen V, Ramírez-Díaz MI. Role of PumB antitoxin as a transcriptional regulator of the PumAB type-II toxin-antitoxin system and its endoribonuclease activity on the PumA (toxin) transcript. Mol Genet Genomics 2023; 298:455-472. [PMID: 36604348 DOI: 10.1007/s00438-022-01988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, PpumB and PpumB-AlgU (in addition to the already reported PpumAB), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the PpumAB and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.
Collapse
Affiliation(s)
- K C Hernández-Ramírez
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Valle-Maldonado
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.,Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - J A Patiño-Medina
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - S Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033, Santiago de los Caballeros, Dominican Republic
| | - I E Jácome-Galarza
- Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - V Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - V Meza-Carmen
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Ramírez-Díaz
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
4
|
Li M, Guo N, Song G, Huang Y, Wang L, Zhang Y, Wang T. Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa. Toxins (Basel) 2023; 15:164. [PMID: 36828478 PMCID: PMC9966142 DOI: 10.3390/toxins15020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Toxin-antitoxin (TA) systems are typically composed of a stable toxin and a labile antitoxin; the latter counteracts the toxicity of the former under suitable conditions. TA systems are classified into eight types based on the nature and molecular modes of action of the antitoxin component so far. The 10 pairs of TA systems discovered and experimentally characterised in Pseudomonas aeruginosa are type II TA systems. Type II TA systems have various physiological functions, such as virulence and biofilm formation, protection host against antibiotics, persistence, plasmid maintenance, and prophage production. Here, we review the type II TA systems of P. aeruginosa, focusing on their biological functions and regulatory mechanisms, providing potential applications for the novel drug design.
Collapse
Affiliation(s)
| | | | | | | | | | - Yani Zhang
- Provincial Key Laboratory of Biotechnology, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Tietao Wang
- Provincial Key Laboratory of Biotechnology, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Kvesić M, Šamanić I, Novak A, Fredotović Ž, Dželalija M, Kamenjarin J, Goić Barišić I, Tonkić M, Maravić A. Submarine Outfalls of Treated Wastewater Effluents are Sources of Extensively- and Multidrug-Resistant KPC- and OXA-48-Producing Enterobacteriaceae in Coastal Marine Environment. Front Microbiol 2022; 13:858821. [PMID: 35602062 PMCID: PMC9121779 DOI: 10.3389/fmicb.2022.858821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and ongoing spread of carbapenemase-producing Enterobacteriaceae has led to a global health threat. However, a limited number of studies have addressed this problem in the marine environment. We investigated their emergence in the coastal waters of the central Adriatic Sea (Croatia), which are recipients of submarine effluents from two wastewater treatment plants. Fifteen KPC-producing Enterobacteriaceae (nine Escherichia coli, four Klebsiella pneumoniae and two Citrobacter freundii) were recovered, and susceptibility testing to 14 antimicrobials from 10 classes showed that four isolates were extensively drug resistant (XDR) and two were resistant to colistin. After ERIC and BOX-PCR typing, eight isolates were selected for whole genome sequencing. The E. coli isolates belonged to serotype O21:H27 and sequence type (ST) 2795, while K. pneumoniae isolates were assigned to STs 37 and 534. Large-scale genome analysis revealed an arsenal of 137 genes conferring resistance to 19 antimicrobial drug classes, 35 genes associated with virulence, and 20 plasmid replicons. The isolates simultaneously carried 43–90 genes encoding for antibiotic resistance, while four isolates co-harbored carbapenemase genes blaKPC-2 and blaOXA-48. The blaOXA-48 was associated with IncL-type plasmids in E. coli and K. pneumoniae. Importantly, the blaKPC-2 in four E. coli isolates was located on ~40 kb IncP6 broad-host-range plasmids which recently emerged as blaKPC-2 vesicles, providing first report of these blaKPC-2-bearing resistance plasmids circulating in E. coli in Europe. This study also represents the first evidence of XDR and potentially virulent strains of KPC-producing E. coli in coastal waters and the co-occurrence of blaKPC-2 and blaOXA-48 carbapenemase genes in this species. The leakage of these strains through submarine effluents into coastal waters is of concern, indicating a reservoir of this infectious threat in the marine environment.
Collapse
Affiliation(s)
- Marija Kvesić
- Center of Excellence for Science and Technology, Integration of Mediterranean Region, University of Split, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Anita Novak
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Juraj Kamenjarin
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ivana Goić Barišić
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Marija Tonkić
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
- *Correspondence: Ana Maravić,
| |
Collapse
|
6
|
Takashima A, Kawano H, Ueda T, Suzuki-Minakuchi C, Okada K, Nojiri H. A toxin-antitoxin system confers stability to the IncP-7 plasmid pCAR1. Gene 2021; 812:146068. [PMID: 34838639 DOI: 10.1016/j.gene.2021.146068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems. Previously, our studies implied that the high stability of the IncP-7 plasmid pCAR1 in different Pseudomonas spp. hosts was due to the presence of a TA system on the plasmid. Bioinformatics approaches suggested that ORF174 and ORF175 could constitute a type II TA system, a member of the RES-Xre family, and that these two open reading frames (ORFs) constitute a single operon. As expected, the ORF175 product is a toxin, which decreases the viability of the host, P. resinovorans, while the ORF174 product functions as an antitoxin that counteracts the effect of ORF175 on cell growth. Based on these findings, we renamed ORF174 and ORF175 as prcA (antitoxin gene) and prcT (toxin gene), respectively. The prcA and prcT genes were cloned into the unstable plasmid vector pSEVA644. The recombinant vector was stably maintained in P. resinovorans and Escherichia coli cells under nonselective conditions following 6 days of daily subculturing. The empty vector (without the prcA and prcT genes) could not be maintained, which suggested that the PrcA/T system can be used as a tool to improve the stability of otherwise unstable plasmids in P. resinovorans and E. coli strains.
Collapse
Affiliation(s)
- Aya Takashima
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hibiki Kawano
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomomi Ueda
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
7
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
8
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
9
|
Pathogenicity Genomic Island-Associated CrpP-Like Fluoroquinolone-Modifying Enzymes among Pseudomonas aeruginosa Clinical Isolates in Europe. Antimicrob Agents Chemother 2020; 64:AAC.00489-20. [PMID: 32340994 DOI: 10.1128/aac.00489-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.
Collapse
|
10
|
Hernández-Ramírez KC, Valerio-Arellano B, Valle-Maldonado MI, Ruíz-Herrera LF, Meza-Carmen V, Ramírez-Díaz MI. Virulence Conferred by PumA Toxin from the Plasmid-Encoded PumAB Toxin-Antitoxin System is Regulated by Quorum System. Curr Microbiol 2020; 77:2535-2543. [PMID: 32556478 DOI: 10.1007/s00284-020-02083-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/08/2020] [Indexed: 12/01/2022]
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin that are important for plasmid stabilization (plasmid-encoded) and bacterial virulence (chromosome-encoded). These systems are also related to biofilm and persister cell formations. Pseudomonas aeruginosa is an antibiotic-resistant human pathogen that produces virulence factors modulated by quorum sensing (QS) and can form biofilms. The type II PumAB TA system of pUM505, isolated from a clinical strain of P. aeruginosa, confers plasmid stability. Additionally, the PumA toxin increases P. aeruginosa virulence and is neutralized by the PumB antitoxin. In this study, we determined whether virulence conferred by PumA toxin is regulated by QS. The pumA gene was transferred to P. aeruginosa lasI/rhlI, a mutant strain in the LasI and RhlI QS systems, to analyze the effect on virulence of the transformants. pumA transfer did not increase bacterial virulence in lettuce and Caenorhabditis elegans, suggesting that the virulence conferred by PumA requires QS modulation. pumA mRNA levels drastically decreased in the P. aeruginosa lasI/rhlI (pUC_pumA) strain, suggesting positive regulation of pumA gene expression by QS. Supplementation of the growth medium of P. aeruginosa lasI/rhlI (pUC_pumA) with C4-AHL and 3-oxo-C12-AHL autoinducers increased pumA mRNA levels and restored bacterial virulence, suggesting that both autoinducers complemented the mutations and positively regulated the toxic effects of PumA. This strengthened the hypothesis that QS regulates bacterial virulence conferred by the PumA toxin. Thus, this report establishes an important function of QS in the virulence conferred by plasmid-encoded TA systems in bacterial pathogens.
Collapse
Affiliation(s)
- Karen C Hernández-Ramírez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Brenda Valerio-Arellano
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Marco I Valle-Maldonado
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Victor Meza-Carmen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
11
|
Buberg ML, Witsø IL, L'Abée-Lund TM, Wasteson Y. Zinc and Copper Reduce Conjugative Transfer of Resistance Plasmids from Extended-Spectrum Beta-Lactamase-Producing Escherichia coli. Microb Drug Resist 2020; 26:842-849. [PMID: 31951514 DOI: 10.1089/mdr.2019.0388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present work addresses the effect of excess levels of ZnCl2 and CuSO4 in the growth medium on the conjugative transfer of plasmids carrying the antibiotic resistance gene blaCMY-2 from extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. Norwegian poultry are not treated prophylactically with antibiotics, but still, ESBL-producing E. coli are found in the chicken populations. Chickens receive higher amounts of Zn and Cu than their biological need, and several metals have been shown to act as drivers of antimicrobial resistance. In the present study, ESBL-producing E. coli strains collected from retail chicken meat were mated in broth containing various concentrations of ZnCl2 and CuSO4. Manual counting of transconjugants showed that ZnCl2 and CuSO4 reduced the conjugation frequency between E. coli strains in a concentration-dependent manner. Quantitative real-time PCR analyses showed that the presence of ZnCl2 and CuSO4 in the growth media reduced expression of the conjugation genes traB and nikB. By propagating monocultures over several generations, it was found that the blaCMY-2 plasmids remained stable in the recipient strains. Together the results show that exposure of ESBL-producing E. coli to Zn and Cu reduce horizontal transfer of the blaCMY-2 resistance plasmid by reducing expression of genes involved in conjugation in the plasmid donor strain.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trine Marie L'Abée-Lund
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
12
|
Fu L, Tang L, Wang S, Liu Q, Liu Y, Zhang Z, Zhang L, Li Y, Chen W, Wang G, Zhou Y. Co-location of the bla KPC-2, bla CTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate. Microb Pathog 2018; 124:301-304. [PMID: 30165112 DOI: 10.1016/j.micpath.2018.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 01/05/2023]
Abstract
Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge.
Collapse
Affiliation(s)
- Li Fu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lingtong Tang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; The First People's Hospital of Yibin, Yibin, 644000, Sichuan, China
| | - Shanmei Wang
- The People's Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Qingye Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yao Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - LuHua Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yin Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - GuangXi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - YingShun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Hernández-Ramírez KC, Reyes-Gallegos RI, Chávez-Jacobo VM, Díaz-Magaña A, Meza-Carmen V, Ramírez-Díaz MI. A plasmid-encoded mobile genetic element from Pseudomonas aeruginosa that confers heavy metal resistance and virulence. Plasmid 2018; 98:15-21. [PMID: 30063910 DOI: 10.1016/j.plasmid.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022]
Abstract
Mobile plasmid-encoded elements are DNA segments that are transferred for horizontal gene transfer and that confer adaptive proprieties, as well as virulence and antibiotic and heavy metal resistance to bacteria. The conjugative plasmid pUM505, isolated from a clinical strain of Pseudomonas aeruginosa, possesses a putative 31.292 kb mobile element (denominated Mpe: Mobile plasmid- encoded element) that, in addition to possessing chr genes that confer chromate resistance to Pseudomonas, contains two putative mer operons that could confer mercury resistance. Moreover, the Mpe contains genes related previously with the virulence of both P. aeruginosa and Escherichia coli strains. In this work, we determined that Mpe from pUM505 was able to independently move to another DNA molecule, conferring chromate and mercury resistance to P. aeruginosa PAO1 and mercury resistance to E. coli JM101, suggesting that its transference might be beneficial to bacteria under certain environmental conditions. Additionally, the transference of Mpe increased the virulence of P. aeruginosa PAO1 against the nematode Caenorhabditis elegans, suggesting its contribution to the pathogenicity of P. aeruginosa. In this work, we describe a new mobile plasmid-encoded element that possesses the potential to be transferred by horizontal gene transference, which could provide bacteria with a wide variety of adaptive traits such as heavy metal resistance and virulence, which can be selective factors for the distribution and prevalence of this plasmid in diverse environments, including hospitals and heavy metal contaminated soils.
Collapse
Affiliation(s)
- Karen C Hernández-Ramírez
- Laboratorio de Microbiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Rosa I Reyes-Gallegos
- Laboratorio de Microbiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Víctor M Chávez-Jacobo
- Laboratorio de Microbiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Amada Díaz-Magaña
- Laboratorio de Microbiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Víctor Meza-Carmen
- Laboratorio de Diferenciación Celular del Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Martha I Ramírez-Díaz
- Laboratorio de Microbiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
| |
Collapse
|
14
|
CrpP Is a Novel Ciprofloxacin-Modifying Enzyme Encoded by the Pseudomonas aeruginosa pUM505 Plasmid. Antimicrob Agents Chemother 2018; 62:AAC.02629-17. [PMID: 29581123 DOI: 10.1128/aac.02629-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
The pUM505 plasmid, isolated from a clinical Pseudomonas aeruginosa isolate, confers resistance to ciprofloxacin (CIP) when transferred into the standard P. aeruginosa strain PAO1. CIP is an antibiotic of the quinolone family that is used to treat P. aeruginosa infections. In silico analysis, performed to identify CIP resistance genes, revealed that the 65-amino-acid product encoded by the orf131 gene in pUM505 displays 40% amino acid identity to the Mycobacterium smegmatis aminoglycoside phosphotransferase (an enzyme that phosphorylates and inactivates aminoglycoside antibiotics). We cloned orf131 (renamed crpP, for ciprofloxacin resistance protein, plasmid encoded) into the pUCP20 shuttle vector. The resulting recombinant plasmid, pUC-crpP, conferred resistance to CIP on Escherichia coli strain J53-3, suggesting that this gene encodes a protein involved in CIP resistance. Using coupled enzymatic analysis, we determined that the activity of CrpP on CIP is ATP dependent, while little activity against norfloxacin was detected, suggesting that CIP may undergo phosphorylation. Using a recombinant His-tagged CrpP protein and liquid chromatography-tandem mass spectrometry, we also showed that CIP was phosphorylated prior to its degradation. Thus, our findings demonstrate that CrpP, encoded on the pUM505 plasmid, represents a new mechanism of CIP resistance in P. aeruginosa, which involves phosphorylation of the antibiotic.
Collapse
|