1
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
2
|
Chen J, Cui YW, Huang MQ, Yan HJ, Li D. Static magnetic field increases aerobic nitrogen removal from hypersaline wastewater in activated sludge with coexistence of fungi and bacteria. BIORESOURCE TECHNOLOGY 2023; 382:129194. [PMID: 37196737 DOI: 10.1016/j.biortech.2023.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Fungi have been found to exist in activated sludge treating saline wastewater, but their role in removing pollution has been neglected. This study explored the aerobic removal of total inorganic nitrogen (TIN) from saline wastewater under static magnetic fields (SMFs) with several strengths. Compared to the control, the aerobic removal of TIN was significantly increased by 1.47 times in 50 mT SMF, due to the increased dissimilation nitrogen removal by fungi and bacteria. Under SMF, fungal nitrogen dissimilation removal was significantly increased by 3.65 times. The fungal population size decreased, and its community composition changed significantly under SMF. In contrast, bacterial community composition and population remained relatively stable. Under SMFs, heterotrophic nitrification - aerobic denitrification bacteria Paracoccus and the fungi denitrifying Candida formed a synergistic interaction. This study elucidates the fungal role in aerobic TIN removal and provides an efficient solution to improve TIN removal from saline wastewater by SMF.
Collapse
Affiliation(s)
- Jun Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| |
Collapse
|
3
|
Guzmán-Armenteros TM, Ruales J, Villacís-Chiriboga J, Guerra LS. Experimental Prototype of Electromagnetic Emissions for Biotechnological Research: Monitoring Cocoa Bean Fermentation Parameters. Foods 2023; 12:2539. [PMID: 37444278 DOI: 10.3390/foods12132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
A Helmholtz-type electromagnetic emission device, which uses an oscillating magnetic field (OMF), with potential applications in biotechnological research, was built and validated. The coils were connected to an alternating current (AC) generator to generate a 0.5 to 110 mT field at their center. OMF measurements were performed with a Hall effect sensor with a digital signal connection (Arduino nano) and data output to a PC using LabVIEW v2017SP1 software. The fermentation process of the cocoa bean variety CCN 51, exposed to four levels of OMF density for 60 min (0, 5, 40, and 80 mT/60 min), was analyzed. Different variables of the grain fermentation process were evaluated over six days. The ANOVA test probed the device's linearity, accuracy, precision, repeatability, reliability, and robustness. Moreover, CCN 51 cocoa beans' EMF-exposure effect was evaluated under different OMF densities for 60 min. The results show the validity of the equipment under working conditions and the impact of EMF (electromagnetic fields) on the yield, deformation, and pH of cocoa beans. Thus, we concluded that the operation of the prototype is valid for use in biotechnological studies.
Collapse
Affiliation(s)
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - José Villacís-Chiriboga
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - Luis Santiago Guerra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito P.O. Box 17-12-759, Ecuador
| |
Collapse
|
4
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
5
|
Wang M, Li J, Ning S, Fu X, Wang X, Tan L. Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153452. [PMID: 35093373 DOI: 10.1016/j.scitotenv.2022.153452] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Operation performance and membrane fouling of a novel static magnetic field membrane bioreactor (SMFMBR) for treatment of hypersaline azo dye wastewater was investigated. The results showed that SMFMBRs possessed higher efficiency of dye decolorization, COD removal and detoxification than the control MBR without SMF. The (3#) SMFMBR equipped with 305.0 mT (the highest intensity) SMF displayed the best treatment performance among all the four reactors (named as 0#-3#, equipped with SMFs of 0 mT, 95.0 mT, 206.3 mT and 305.0 mT, respectively). Potentially effective microbes belonging to Rhodanobacter, Saccharibacteria genera incertae sedis, Defluviimonas, Cellulomonas, Cutaneotrichosporon, Candida and Pichia were enriched in three SMFMBRs, in both of suspended sludge and bio-cakes. The relative abundance of Candida and Pichia in suspended sludge of 3# SMFMBR was the highest among all the four reactors, suggesting their successful colonization and potentially persistent effect of bioaugmentation. On the other hand, SMF of higher intensity effectively mitigated membrane fouling. Less production of soluble microbial products (SMP) and extracellular polymeric substances (EPS), lower protein/polysaccharide (PN/PS) ratio in SMP and EPS, looser structure of bio-cakes on membrane surface, as well as lower relative abundance of potential fouling causing microbes (mainly bacteria) in microbial communities were determined in 3# SMFMBR than the other three groups.
Collapse
Affiliation(s)
- Meining Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Jiamin Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Shuxiang Ning
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaohan Wang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China
| | - Liang Tan
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116081, China.
| |
Collapse
|
6
|
Cazals F, Huguenot D, Crampon M, Colombano S, Betelu S, Galopin N, Perrault A, Simonnot MO, Ignatiadis I, Rossano S. Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136143. [PMID: 31884277 DOI: 10.1016/j.scitotenv.2019.136143] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Biosurfactants are surface-active agents produced by microorganisms whose use in soil remediation processes is increasingly discussed as a more environmentally friendly alternative than chemically produced surfactants. In this work, we report the production of a biosurfactant by a bacterial community extracted from a polluted soil, mainly impacted by PAHs, in order to use it in a soil-washing process coupled with bioremediation. Nutrient balance was a critical parameter to optimize the production. Best conditions for biosurfactant production were found to be 20 g/L of glucose, 2 g/L of NH4NO3, and 14.2 g/L of Na2HPO4, corresponding to a C/N/P molar ratio equal to 13/1/2. Purification of the produced biosurfactant by acidification and double extraction with dichloromethane as a solvent allowed measuring the Critical Micellar Concentration (CMC) as equal to 42 mg/L. The capacity of the purified biosurfactant to increase the apparent solubility of four reference PAHs (naphthalene, phenanthrene, pyrene and benzo[a]pyrene) was completed. The solubilisation ratios, in mg of PAH/g of biosurfactant for phenanthrene, pyrene and benzo[a]pyrene are 0.214, 0.1204 and 0.0068, respectively. Identification of the bacteria found in the colony producing the biosurfactant showed the presence of bacteria able to produce biosurfactant (Enterobacteriaceae, Pseudomonas), as well as, others able to degrade PAHs (Microbacterium, Pseudomonas, Rhodanobacteraceae).
Collapse
Affiliation(s)
- Florian Cazals
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France; Colas Environnement, France; Bureau de Recherches Géologiques et Minières (BRGM), France.
| | - David Huguenot
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| | - Marc Crampon
- Bureau de Recherches Géologiques et Minières (BRGM), France.
| | | | | | | | | | - Marie-Odile Simonnot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 54000 Nancy, France.
| | | | - Stéphanie Rossano
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France.
| |
Collapse
|
7
|
Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133971. [PMID: 31470323 DOI: 10.1016/j.scitotenv.2019.133971] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are principally derived from the incomplete combustion of fossil fuels. This study investigated the occurrence of PAHs in aquatic environments around the world, their effects on the environment and humans, and methods for their removal. Polycyclic aromatic hydrocarbons have a great negative impact on the humans and environment, and can even cause cancer in humans. Use of good methods and equipment are essential to monitoring PAHs, and GC/MS and HPLC are usually used for their analysis in aqueous solutions. In aquatic environments, the PAHs concentrations range widely from 0.03 ng/L (seawater; Southeastern Japan Sea, Japan) to 8,310,000 ng/L (Domestic Wastewater Treatment Plant, Siloam, South Africa). Moreover, bioaccumulation of ∑16PAHs in fish has been reported to range from 11.2 ng/L (Cynoscion guatucupa, South Africa) to 4207.5 ng/L (Saurida undosquamis, Egypt). Several biological, physical and chemical and biological techniques have been reported to treat water contaminated by PAHs, but adsorption and combined treatment methods have shown better removal performance, with some methods removing up to 99.99% of PAHs.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
8
|
Mansouri A, Abbes C, Ben Mouhoub R, Ben Hassine S, Landoulsi A. Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. PLoS One 2019; 14:e0208431. [PMID: 30608939 PMCID: PMC6319723 DOI: 10.1371/journal.pone.0208431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
One of the main challenges of bioremediation is to define efficient protocols with low environmental impact and high removal rates, such as static magnetic field (SMF). The aim of this study was to evaluate the effect of SMF exposure on the biodegradation rate of a mixture of pollutants using three bacterial strains which were isolated and identified from the Bizerte lagoon: Pseudomonas stutzeri LBR (KC157911), Cupriavidus metallidurans LBJ (KU659610) and Rhodococcus equi LBB (KU743870). To recognize the improvement role of SMF, the culture was submitted to a pre-treatment with SMF with an induction equal to 200 mT for 5 hours, after that the degradation experiment was followed with individual strains and with a consortium. Results showed an increase by 20% in the growth of the exposed bacterial population compared to controls, and 98% of biodegradation of DDT and 90% for BaP after 30 days of follow-up. This encouraging data opens new perspectives for a bioremediation bioprocess using SMF.
Collapse
Affiliation(s)
- Ahlem Mansouri
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
- * E-mail:
| | - Chiraz Abbes
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Ramla Ben Mouhoub
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Environmental Analytical Chemistry, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | - Ahmed Landoulsi
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| |
Collapse
|