1
|
Fernández-Fernández R, Lozano C, Campaña-Burguet A, González-Azcona C, Álvarez-Gómez T, Fernández-Pérez R, Peña R, Zarazaga M, Carrasco J, Torres C. Bacteriocin-Producing Staphylococci and Mammaliicocci Strains for Agro-Food and Public Health Applications with Relevance of Micrococcin P1. Antibiotics (Basel) 2025; 14:97. [PMID: 39858382 PMCID: PMC11763047 DOI: 10.3390/antibiotics14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial-producing strains and their bacteriocins hold great promise for the control of bacterial diseases, being an attractive alternative to antibiotics. Thus, the aim of this study was to evaluate the inhibitory activity of 15 bacteriocin-producing staphylococci and mammaliicocci (BP-S/M) strains and their pre-purified extracts with butanol (BT) against a collection of 27 harmful or zoonotic strains (including Gram-positive/-negative bacteria and molds) with relevance in the public health and agro-food fields. These indicators (excluding Gram-negative strains) were grouped into seven categories based on their potential application areas: dairy livestock mastitis, avian pathogen zoonoses, swine zoonoses, food safety, aquaculture, wine making, and mushroom cultivation. In addition, cross-immunity assays between the BP-S/M strains were carried out to identify potential strain combinations to enhance their activity against pathogens. Finally, the hemolytic and gelatinase activities were tested in the BP-S/M strains. A strong inhibitory capacity of the BP-S/M strains was verified against relevant Gram-positive indicators, such as methicillin-resistant Staphylococcus aureus, Listeria monocytogenes, and Clostridium perfringens, among others, while no activity was detected against Gram-negative ones. Interestingly, several BT extracts inhibited the two mold indicators included in this study as representants of mushroom pathogens. The Micrococcin P1 producer Staphylococcus hominis C5835 (>60% of indicators were intensively inhibited by all the methods) can be proposed as a potential candidate for the control of bacterial diseases in the aforementioned categories alone or in combination with other BP-S/M strains (mainly with Staphylococcus warneri X2969). In this regard, five potential combinations of BP-S/M strains that enhanced their activity against specific pathogens were detected.
Collapse
Affiliation(s)
- Rosa Fernández-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Tamara Álvarez-Gómez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Rocío Fernández-Pérez
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Universidad de La Rioja, Consejo Superior de Investigaciones Científicas (CSIC), Gobierno de La Rioja), 26007 Logroño, Spain;
| | - Raquel Peña
- Department of Microbiology and Parasitology, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| | - Jaime Carrasco
- Department Ecology of Cultivated Mushrooms, Regional Institute for Agri-Food and Forest Research and Development (IRIAF), 16194 Cuenca, Spain;
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (R.F.-F.); (C.L.); (A.C.-B.); (C.G.-A.); (T.Á.-G.); (M.Z.)
| |
Collapse
|
2
|
Kharnaior P, Tamang JP. Microbiome and metabolome in home-made fermented soybean foods of India revealed by metagenome-assembled genomes and metabolomics. Int J Food Microbiol 2023; 407:110417. [PMID: 37774634 DOI: 10.1016/j.ijfoodmicro.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Grep-chhurpi, peha, peron namsing and peruñyaan are lesser-known home-made fermented soybean foods prepared by the native people of Arunachal Pradesh in India. Present work aims to study the microbiome, their functional annotations, metabolites and recovery of metagenome-assembled genomes (MAGs) in these four fermented soybean foods. Metagenomes revealed the dominance of bacteria (97.80 %) with minor traces of viruses, eukaryotes and archaea. Bacillota is the most abundant phylum with Bacillus subtilis as the abundant species. Metagenome also revealed the abundance of lactic acid bacteria such as Enterococcus casseliflavus, Enterococcus faecium, Mammaliicoccus sciuri and Staphylococcus saprophyticus in all samples. B. subtilis was the major species found in all products. Predictive metabolic pathways showed the abundance of genes associated with metabolisms. Metabolomics analysis revealed both targeted and untargeted metabolites, which suggested their role in flavour development and therapeutic properties. High-quality MAGs, identified as B. subtilis, Enterococcus faecalis, Pediococcus acidilactici and B. velezensis, showed the presence of several biomarkers corresponding to various bio-functional properties. Gene clusters of secondary metabolites (antimicrobial peptides) and CRISPR-Cas systems were detected in all MAGs. This present work also provides key elements related to the cultivability of identified species of MAGs for future use as starter cultures in fermented soybean food product development. Additionally, comparison of microbiome and metabolites of grep-chhurpi, peron namsing and peruñyaan with that of other fermented soybean foods of Asia revealed a distinct difference.
Collapse
Affiliation(s)
- Pynhunlang Kharnaior
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India.
| |
Collapse
|
3
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
4
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Afzaal M, Saeed F, Hanif H, Islam F, Hussain M, Shah YA, Ikram A. Nutritional composition and functional properties of fermented product (Koozh): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Hafsa Hanif
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| |
Collapse
|
6
|
Khusro A, Aarti C. Metabolic heterogeneity and techno-functional attributes of fermented foods-associated coagulase-negative staphylococci. Food Microbiol 2022; 105:104028. [DOI: 10.1016/j.fm.2022.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 01/03/2023]
|
7
|
Sarma U, Gupta S. An overview on ethnic fermented food and beverages of India: Interplay of microbes, immunity and nutrition. Nutr Health 2022; 28:331-339. [PMID: 35306904 DOI: 10.1177/02601060221085138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: India is a land of diverse food culture and habits and has a plethora of ethnic fermented foods to boast of. Ranging from the north east to the western part of the country and from northern Indian states to the southern tip of the country, fermented ethnic foods have become part of everyday meals and have been able to bridge nutritional gaps and improve general immunity of the people. Most ethnic fermented foods have a rich content of protein, vitamins, fibres and minerals. Aim: Our review attempts to bring forth and summarise the most popular, immune boosting fermented foods of various regions in India, the role microbes' play in their making and how they have impacted the nutritional aspects and immunity of people in various regions of the country. It also highlights the lack of clinical findings in proving the effectiveness of most fermented foods. Methods: Pubmed central and Google scholar were extensively searched from inception to July 2021 for study concepts and topic related keywords. Results: Ethnic fermented food of various Indian regions has shown a definitive role in improving health and immunity. Conclusion: The diverse ethnic fermented foods maybe be meat based, cereal based, pulses based and even vegetable based. Their health benefits and immune boosting abilities are still to be explored to its maximum potential. Often the role of microbes in these fermented foods have also been underplayed and left unexplored.
Collapse
Affiliation(s)
- Upasana Sarma
- Department of Microbiology, Faculty of Allied Health Sciences, Sri Guru Govind Singh Tricentenary University, Gurugram, India
| | - Suchandra Gupta
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, Sri Guru Govind Singh Tricentenary University, Gurugram, India
| |
Collapse
|
8
|
Profiling of autochthonous microbiota and characterization of the dominant lactic acid bacteria occurring in fermented fish sausages. Food Res Int 2022; 154:110990. [DOI: 10.1016/j.foodres.2022.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
|
9
|
Hussain MS, Vashist A, Kumar M, Taneja NK, Gautam US, Dwivedi S, Tyagi JS, Gupta RK. Anti-mycobacterial activity of heat and pH stable high molecular weight protein(s) secreted by a bacterial laboratory contaminant. Microb Cell Fact 2022; 21:15. [PMID: 35093096 PMCID: PMC8799974 DOI: 10.1186/s12934-022-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis. RESULTS We utilized microbiological, biochemical and biophysical approaches to characterize LC-1 and anti-mycobacterial compound(s) in its secretome. Based on 16S rRNA sequencing and BIOLOG analysis, LC-1 was identified as Staphylococcus hominis, a human bacterial commensal. Anti-mycobacterial activity was initially found in 30 kDa retentate that was obtained by ultrafiltration of culture filtrate (CF). SDS-PAGE analysis of peak fractions obtained by size exclusion chromatography of 30 kDa retentate confirmed the presence of high molecular weight (≥ 30 kDa) proteins. Peak fraction-1 (F-1) exhibited inhibitory activity against M. bovis BCG, but not against M. smegmatis, E. coli and S. aureus. The active fraction F-1 was inactivated by treatment with Proteinase K and α-chymotrypsin. However, it retained its anti-mycobacterial activity over a wide range of heat and pH treatment. The anti-mycobacterial activity of F-1 was found to be maintained even after a long storage (~12 months) at - 20 °C. Mass spectrometry analysis revealed that the identified peptide masses do not match with any previously known bacteriocins. CONCLUSIONS The present study highlights the anti-mycobacterial activity of high molecular weight protein(s) present in culture filtrate of LC-1, which may be tested further to target M. tuberculosis. The heat and pH stability of these proteins add to their characteristics as therapeutic proteins and may contribute to their long shelf life. LC-1 being a human commensal can be tested in future for its potential as a probiotic to treat tuberculosis.
Collapse
Affiliation(s)
- Md Sajid Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Infection & Immunology, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
| | - Mahadevan Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Microbiology, Bharati Vidyapeeth University, Medical College, Pune, 411043, India
| | - Neetu Kumra Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana, 131028, India
| | - Uma Shankar Gautam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
- School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Seema Dwivedi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajesh Kumar Gupta
- School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201306, India.
| |
Collapse
|
10
|
Barathikannan K, Chelliah R, Elahi F, Tyagi A, Selvakumar V, Agastian P, Valan Arasu M, Oh DH. Anti-Obesity Efficacy of Pediococcus acidilactici MNL5 in Canorhabditis elegans Gut Model. Int J Mol Sci 2022; 23:1276. [PMID: 35163199 PMCID: PMC8835910 DOI: 10.3390/ijms23031276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, India;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Deog-Hawn Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (K.B.); (R.C.); (F.E.); (A.T.); (V.S.)
| |
Collapse
|
11
|
Majumdar RK, Gupta S. Isolation, identification and characterization of Staphylococcus sp. from Indian ethnic fermented fish product. Lett Appl Microbiol 2020; 71:359-368. [PMID: 32713031 DOI: 10.1111/lam.13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023]
Abstract
Staphylococci from Sheedal of Northeast India was isolated, identified and characterized. All the isolated staphylococci were found to be coagulase negative. Based on the rpoB gene sequences followed by analysis using NCBI-BLAST software, seven species of Staphylococcus namely, S. piscifermentans, S. condimenti, S. arlettae, S. sciuri, S. warneri, S. nepalensis and S. hominis were recognized. Phylogenetic analyses revealed three major cluster groups. All the seven Staphylococcus showed their NaCl tolerance from 2 to 8%. No species was able to grow at 55°C. Except S. arlettae and S. sciuri, all the isolated staphylococcal species exhibited growth at pH 4-8. No isolated species was able to ferment mannitol, sucrose and arabinose. All the species exhibited moderate to maximum proteolytic and lipolytic activities. All the seven species were found to be sensitive to the antibiotics, namely, erythromycin, norfloxacin, ampicillin, streptomycin and vancomycin, whereas all were resistant to co-trimoxazole. Only S. piscifermentans was found antagonist to Salmonella enterica, Escherichia coli and Bacillus subtilis, although the clear zone was minimal. All the staphylococcal species except S. arlettae and S. sciuri exhibited hydrophobicity ranging from 25 to 66%. The observed characteristics of isolated Staphylococci from Sheedal revealed their role in fish fermentation.
Collapse
Affiliation(s)
- R K Majumdar
- College of Fisheries (CAU-I), Lembucherra, Tripura, India
| | - S Gupta
- College of Fisheries (CAU-I), Lembucherra, Tripura, India
| |
Collapse
|
12
|
Maheshwari M, Gupta A, Gaur S. Probiotic Potential of Traditional Indian Fermented Drinks. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190821113406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Probiotics are living microorganisms, which when taken in adequate amount, provide various health benefits by maintaining the balance of bacteria in the intestine. Probiotics are purported to have countless health benefits, some of which include improved digestion, enhanced immunity, prevention of cancer and diabetes. The most common group of probiotics include species of Lactobacillus, Bifidobacterium and Enterococcus. In order to work as an effective probiotic, the microbial strain is expected to exhibit certain desirable characteristics like acid and bile tolerance, antimicrobial activity, adhesion to intestinal epithelium, etc. The fermented products contain a myriad of bacteria, some of which are characterized as probiotics and are responsible for various health benefits associated with the product. The fermented foods and drinks have been consumed in India since time immemorial. The art of fermentation has been a part of the traditional knowledge of India for thousands of years. The use of fermented products is strongly linked to the culture and tradition of India. Some traditional fermented drinks of India having probiotic potential include Koozh, Toddy, Kanji, Hamei and Handia. Further research on the probiotic potential of traditional fermented drinks may pave a path for their medical usage and commercial development.
Collapse
Affiliation(s)
- Mahima Maheshwari
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Akshra Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
13
|
Computational modelling and docking insight of bacterial peptide as ideal anti-tubercular and anticancer agents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Tsafrakidou P, Michaelidou AM, G. Biliaderis C. Fermented Cereal-based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020; 9:E734. [PMID: 32503142 PMCID: PMC7353534 DOI: 10.3390/foods9060734] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Fermentation, as a process to increase the security of food supply, represents an integral part of food culture development worldwide. Nowadays, in the evolving functional food era where new sophisticated technological tools are leading to significant transformations in the field of nutritional sciences and science-driven approaches for new product design, fermentation technology is brought to the forefront again since it provides a solid foundation for the development of safe food products with unique nutritional and functional attributes. Therefore, the objective of the present review is to summarize the most recent advances in the field of fermentation processes related to cereal-based products. More specifically, this paper addresses issues that are relevant to nutritional and health aspects, including their interrelation with intestinal (gut) microbiome diversity and function, although clinical trials and/or in vitro studies testing for cereal-based fermented products are still scarce.
Collapse
Affiliation(s)
- Panagiota Tsafrakidou
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece;
| | - Alexandra-Maria Michaelidou
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
15
|
Khayyira AS, Rosdina AE, Irianti MI, Malik A. Simultaneous profiling and cultivation of the skin microbiome of healthy young adult skin for the development of therapeutic agents. Heliyon 2020; 6:e03700. [PMID: 32337379 PMCID: PMC7176942 DOI: 10.1016/j.heliyon.2020.e03700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Studies on the impact of the skin microbiota on human health have been gaining more attention. Bacteria are associated with various diseases, although certain strains of bacteria, which are known as probiotics, are considered beneficial. Mixtures of several bacteria (bacterial cocktail) isolated from targeted organs have shown promising modulatory activities for use in skin therapeutics. The objectives of this study were to determine and identify the microbial communities on the skin that can potentially be used as probiotics, as determined by bacterial isolation and cultivation, followed by next-generation sequencing (NGS). Results Samples were collected by swabbing on forehead and cheek skin. Genomic DNA from bacterial swab samples were directly extracted to be further processed into NGS. Cultivation of skin bacteria was carried out in subsequent medium. Thus, around twenty bacterial isolates with different characteristics were selected and identified by both culture-based method and 16sRNA sequencing. We found that Actinobacteria and Firmicutes are the most abundant phylum present on the skin as presented by NGS data, which constitute to 67% and 28.59% of the whole bacterial population, consecutively. However, Staphylococcus hominis, Staphylococcus warneri, and Micrococcus luteus (AN MK968325.1; AN MK968315.1; and MK968318.1 respectively) were able to be obtained in the samples of cultivable, and could be potentially developed as probiotics in skin microbiome therapeutic as well as for postbiotic formulation. Conclusion Skin microbiome is considered to provide several probiotics for skin therapeutic. However, some opportunistic pathogens were discovered in this study population. Thus, the promising formula of bacterial cocktail for skin microbiome therapeutic must be thoroughly elucidated to avoid unwanted species. Our study is the first human skin microbiome profile of Indonesia resulted from a Next Generation Sequencing as an effort to show a representative of tropical country profile.
Collapse
|
16
|
Esther Lydia D, Khusro A, Immanuel P, Esmail GA, Al-Dhabi NA, Arasu MV. Photo-activated synthesis and characterization of gold nanoparticles from Punica granatum L. seed oil: An assessment on antioxidant and anticancer properties for functional yoghurt nutraceuticals. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111868. [PMID: 32259745 DOI: 10.1016/j.jphotobiol.2020.111868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/30/2020] [Indexed: 01/26/2023]
Abstract
Yoghurt is a fermenting milk-based dairy product that has high nutritional benefits. It exhibits not only protection against osteoporosis but also enhances gut microbiota and aids digestion. In order to improve health beneficial aspects of yoghurt, this study was aimed to synthesize gold nanoparticles (AuNPs) using seeds oil of pomegranate (Punica granatum L.) and to formulate functional yoghurt for its antioxidant and anticancer properties. The synthesized AuNPs were characterized using UV-Vis spectrophotometer, FT-IR, XRD, EDX, SEM, DLS, and Zeta potential analyzer. The photo-induced synthesis of AuNPs showed particle size and zeta potential of 70 nm and +34 mV, respectively, with unique peak at 525 nm as observed using UV-Vis spectrophotometer. The FT-IR spectrum of AuNPs showed shifts in the functional groups from 3632.27 to 541.899 cm-1, thereby indicating the presence of various functional groups in pomegranate seed oil (PSO) and PSO-capped AuNPs. The AuNPs were observed to be smooth, elongated, and rectangular in shape. The PSO-capped AuNPs based formulation of functional yoghurt revealed DPPH degradation (23.6 ± 1.5 to 62.5 ± 1.8%) and H2O2 scavenging traits (21.6 ± 1.3 to 62.8 ± 1.8%) at varied concentrations. In addition, the PSO-capped AuNPs depicted strong anticancer attributes against lung and colon cancer with the cell viability ranging from 80.3 to 25% and 83.3 to 28.4.2%, respectively. Results concluded that the antioxidative components of PSO might have reduced and formulated AuNPs-based functional yoghurt. This functional yoghurt may reveal pivotal applications in food, nutraceuticals, and pharmaceuticals, especially as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- D Esther Lydia
- PG Food Chemistry and Food Processing, Loyola College, Nungambakkam, Chennai 600034, India
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, India
| | - P Immanuel
- PG Food Chemistry and Food Processing, Loyola College, Nungambakkam, Chennai 600034, India
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Ameer K, Chirom A, Paul A. Production and purification of anti-tubercular and anticancer protein from Staphylococcus hominis under mild stress condition of Mentha piperita L. J Pharm Biomed Anal 2020; 182:113136. [PMID: 32035335 DOI: 10.1016/j.jpba.2020.113136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/26/2023]
Abstract
The present study was investigated to purify and characterize anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2 under mild stress condition of Mentha piperita L. Initially, the in vitro anti-tubercular activity of strain MANF2 was determined against Mycobacterium tuberculosis H37Rv using luciferase reporter phage (LRP) assay which showed relative light unit reduction (RLU) of >90 %. Further, MTT test revealed promising in vitro anticancer trait of strain MANF2 against lung (A549) and colon (HT-29) cancer cell lines. Mild stress of M. piperita L. was provided to strain MANF2 at lag and log phase of its growth and the protein production was optimized statistically using central composite design of response surface methodology. Results showed enhanced protein production in the medium containing yeast extract (0.5 % w/v) and glycerol (1.5 % v/v), being supplemented with M. piperita L. (1.5 % v/v at log phase of strain MANF2. Protein was purified using standard purification techniques and showed single homogeneous band on SDS-PAGE with nominal molecular mass of 51293 Da, as confirmed by MALDI-TOF MS/MS. The N- amino acid sequencing showed homology with proline dehydrogenase (ProDH), thus, the protein was proposed to be new ProDH-like protein in S. hominis. Further, LRP test revealed concentration dependent (10-50 μg/mL) in vitro anti-tubercular properties of purified protein with significant RLU reductions of 36.8 ± 0.3-78.5 ± 0.4 %. The IC50 values of purified protein against A549 and HT-29 cancer cells were calculated as 42.2 and 48.4 μg/mL, respectively. In conclusion, protein purified from strain MANF2 under mild stress of M. piperita L can certainly be implied as efficacious anti-tubercular and anticancer agents in future.
Collapse
Affiliation(s)
- Khusro Ameer
- Research Department of Plant Biology and Biotechnology, Loyola College (Affiliated to University of Madras), Nungambakkam, Chennai, 600034, Tamil Nadu, India.
| | - Aarti Chirom
- Research Department of Plant Biology and Biotechnology, Loyola College (Affiliated to University of Madras), Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | - Agastian Paul
- Research Department of Plant Biology and Biotechnology, Loyola College (Affiliated to University of Madras), Nungambakkam, Chennai, 600034, Tamil Nadu, India.
| |
Collapse
|
18
|
Khusro A, Aarti C, Mahizhaveni B, Dusthackeer A, Agastian P, Esmail GA, Ghilan AKM, Al-Dhabi NA, Arasu MV. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide. Saudi J Biol Sci 2020; 27:1107-1116. [PMID: 32256172 PMCID: PMC7105933 DOI: 10.1016/j.sjbs.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/22/2023] Open
Abstract
The present context was investigated to purify and characterize anti-tubercular as well as anticancer protein from fermented food associated Staphylococcus hominis strain MANF2. Initially, the anti-tubercular potency of strain MANF2 was assessed against Mycobacterium tuberculosis H37Rv using luciferase reporter phase assay which revealed pronounced relative light unit (RLU) reduction of 92.5 ± 1.2%. The anticancer property of strain MANF2 was demonstrated against lung cancer (A549) and colon cancer (HT-29) cell lines using MTT assay which showed reduced viabilities. Anti-tubercular activities of the purified protein were observed to be increased significantly (P < 0.05) ranging from 34.6 ± 0.3 to 71.4 ± 0.4% of RLU reduction. Likewise, the purified protein showed significantly (P < 0.05) reduced viabilities of A549 and HT-29 cancer cells with IC50 values of 46.6 and 48.9 µg/mL, respectively. The nominal mass of the purified protein was found to be 7712.3 Da as obtained from MALDI-TOF MS/MS spectrum. The protein showed the sequence homology with 1–336 amino acids of Glyceraldehyde-3-phosphate dehydrogenase from Staphylococcus sp., thus, categorizing as a new class of Glyceraldehyde-3-phosphate dehydrogenase-like protein. The amino acid sequence of the most abundant peptide (m/z = 1922.12) in the purified protein was obtained as ‘KAIGLVIPEIDGKLDGGAQRV’ and it was identified as peptide NMANF2. In silico tools predicted significant stereo-chemical, physiochemical, and functional characteristics of peptide NMANF2. In a nutshell, protein purified from strain MANF2 can certainly be used as an ideal therapeutic agent against tuberculosis and cancer (lung and colon).
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College (Autonomous), University of Madras, Chennai 34, Tamil Nadu, India
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College (Autonomous), University of Madras, Chennai 34, Tamil Nadu, India
| | - B Mahizhaveni
- Department of Bacteriology, National Institute for Research in Tuberculosis, ICMR, Sathyamoorty Road, Chetpet, Chennai 31, Tamil Nadu, India
| | - Azger Dusthackeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, ICMR, Sathyamoorty Road, Chetpet, Chennai 31, Tamil Nadu, India
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College (Autonomous), University of Madras, Chennai 34, Tamil Nadu, India
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul-Kareem Mohammed Ghilan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Patz S, Witzel K, Scherwinski AC, Ruppel S. Culture Dependent and Independent Analysis of Potential Probiotic Bacterial Genera and Species Present in the Phyllosphere of Raw Eaten Produce. Int J Mol Sci 2019; 20:ijms20153661. [PMID: 31357436 PMCID: PMC6696213 DOI: 10.3390/ijms20153661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
The plant phyllosphere is colonized by a complex ecosystem of microorganisms. Leaves of raw eaten vegetables and herbs are habitats for bacteria important not only to the host plant, but also to human health when ingested via meals. The aim of the current study was to determine the presence of putative probiotic bacteria in the phyllosphere of raw eaten produce. Quantification of bifidobacteria showed that leaves of Lepidium sativum L., Cichorium endivia L., and Thymus vulgaris L. harbor between 103 and 106 DNA copies per gram fresh weight. Total cultivable bacteria in the phyllosphere of those three plant species ranged from 105 to 108 CFU per gram fresh weight. Specific enrichment of probiotic lactic acid bacteria from C. endivia, T. vulgaris,Trigonella foenum-graecum L., Coriandrum sativum L., and Petroselinum crispum L. led to the isolation of 155 bacterial strains, which were identified as Pediococcus pentosaceus, Enterococcus faecium, and Bacillus species, based on their intact protein pattern. A comprehensive community analysis of the L. sativum leaves by PhyloChip hybridization revealed the presence of genera Bifidobacterium, Lactobacillus, and Streptococcus. Our results demonstrate that the phyllosphere of raw eaten produce has to be considered as a substantial source of probiotic bacteria and point to the development of vegetables and herbs with added probiotic value.
Collapse
Affiliation(s)
- Sascha Patz
- Algorithms in Bioinformatics, ZBIT Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Ann-Christin Scherwinski
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| |
Collapse
|
20
|
Khusro A, Aarti C, Dusthackeer A, Agastian P. Enhancement of anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array and Box-Behnken design. Microb Pathog 2018; 120:8-18. [PMID: 29665438 DOI: 10.1016/j.micpath.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023]
Abstract
The prime focus of the present investigation was to optimize statistically the anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array (OA) and Box-Behnken design (BBD). The anti-tubercular activity of strain MANF2 was determined against Mycobacterium tuberculosis H37Rv using luciferase reporter phase assay. Among varied media examined, the isolate exhibited impressive anti-tubercular activity with paramount relative light unit reduction of >90% in de Man Rogose Sharpe (MRS) broth. Primarily, the anti-tubercular activity and biomass of strain MANF2 were estimated in MRS broth by optimizing eight diversified parameters using one factor at a time (OFAT) method after working out a series of experiments. The most significant contributing factors selected through OFAT tool were optimized using Taguchi approach with a standard OA layout of L18 (22 × 36). Results demonstrated the significant (P ≤ 0.05) influence of pH, temperature, yeast extract, magnesium sulphate, and glycerol on response variables. These controlled variables were further optimized using BBD matrix at N = 46 by second-order polynomial equation. The fermentation medium of pH 6.5 constituting yeast extract (0.5% w/v), magnesium sulphate (0.1% w/v), and glycerol (1.5% v/v), being further incubated at 30 °C showed enhanced anti-tubercular activity (98.7%) and approximately 4 fold increment in the bacterial biomass yield (8.3 mg/mL) with respect to traditional OFAT method. Three-dimensional response plots of the quadratic model showed interdependent interaction between the significant variables. In conclusion, the present study revealed the first report on the optimization of anti-tubercular activity and biomass of S. hominis via Taguchi OA as well as BBD design, and thus, paved a path for its proficient applications in pharmaceutical industries as dynamic mycobactericidal agent in future.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India
| | - Azger Dusthackeer
- Department of Bacteriology, National Institute for Research in Tuberculosis, ICMR, Sathyamoorty Road, Chetpet, Chennai 31, Tamil Nadu, India
| | - Paul Agastian
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| |
Collapse
|