1
|
Cui M, Wang M, Liu X, Sun H, Su Z, Zheng Y, Shen Y, Wang M. Mining and characterization of novel antimicrobial peptides from the large-scale microbiome of Shanxi aged vinegar based on metagenomics, molecular dynamics simulations and mechanism validation. Food Chem 2024; 460:140646. [PMID: 39089018 DOI: 10.1016/j.foodchem.2024.140646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The study aimed to mine and characterize novel antimicrobial peptides (AMPs) from the Shanxi aged vinegar microbiome. Utilizing machine learning techniques, AlphaFold2 structure prediction and molecular dynamics simulations, six novel AMPs were innovatively mined from 98,539 peptides based on metagenomic data, of which one peptide secreted by Lactobacillus (named La-AMP) was experimentally validated to have remarkable bactericidal effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with high stability and no hemolytic activity. Scanning electron microscopy revealed that La-AMP caused irreversible damage to cell membranes of S. aureus and E. coli, a finding further confirmed by calcein-AM/propidium iodide staining. Additionally, La-AMP induced nucleic acid leakage and reactive oxygen species accumulation in bacterial cells. It was found to bind to DNA gyrase through salt bridges, hydrogen bonds, and hydrophobic interactions, ultimately inducing apoptosis. Thus, La-AMP exhibited encouraging promise as a valuable bioactive component for the development of natural preservatives.
Collapse
Affiliation(s)
- Meili Cui
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengyue Wang
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoyan Sun
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghua Su
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanbing Shen
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Awdhesh Kumar Mishra R, Kodiveri Muthukaliannan G. In-silico and in-vitro study of novel antimicrobial peptide AM1 from Aegle marmelos against drug-resistant Staphylococcus aureus. Sci Rep 2024; 14:25822. [PMID: 39468175 PMCID: PMC11519352 DOI: 10.1038/s41598-024-76553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Antimicrobial peptides have garnered increasing attention as potential alternatives due to their broad-spectrum antimicrobial activity and low propensity for developing resistance. This is for the first time; proteome sequences of Aegle marmelos were subjected to in-silico digestion and AMP prediction were performed using DBAASP server. After screening the peptides on the basis of different physiochemical property, peptide sequence GKEAATKAIKEWGQPKSKITH (AM1) shows the maximum binding affinity with - 10.2 Kcal/mol in comparison with the standard drug (Trimethoprim) with - 7.4 kcal/mol and - 6.8 Kcal/mol for DHFR and SaTrmK enzyme respectively. Molecular dynamics simulation performed for 300ns, it has been found that peptide was able to stabilize the protein more effectively, analysed by RMSD, RMSF, and other statistical analysis. Free binding energy for DHFR and SaTrmK interaction from MMPBSA analysis with peptide was found to be -47.69 and - 44.32 Kcal/mol and for Trimethoprim to be -13.85 Kcal/mol and - 11.67 Kcal/mol respectively. Further in-vitro study was performed against Methicillin Susceptible Staphylococcus aureus (MSSA), Methicillin Resistant Staphylococcus aureus (MRSA), Multi-Drug Resistant Staphylococcus aureus (MDR-SA) strain, where MIC values found to be 2, 4, and 8.5 µg/ml lesser in comparison to trimethoprim which has higher MIC values 2.5, 5, and 9.5 µg/ml respectively. Thus, our study provides the insight for the further in-vivo study of the peptides against multi-drug resistant S. aureus.
Collapse
Affiliation(s)
- Rudra Awdhesh Kumar Mishra
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | |
Collapse
|
3
|
Cui M, Wang M, Sun H, Yu L, Su Z, Zhang X, Zheng Y, Xia M, Shen Y, Wang M. Identifying and characterization of novel broad-spectrum bacteriocins from the Shanxi aged vinegar microbiome: Machine learning, molecular simulation, and activity validation. Int J Biol Macromol 2024; 270:132272. [PMID: 38734334 DOI: 10.1016/j.ijbiomac.2024.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 μg/mL-15.31 μg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Meili Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengyue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoyan Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenhua Su
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanbing Shen
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Gaffey J, Rajuaria G, McMahon H, Ravindran R, Dominguez C, Jensen MA, Souza MF, Meers E, Aragonés MM, Skunca D, Sanders JPM. Green Biorefinery systems for the production of climate-smart sustainable products from grasses, legumes and green crop residues. Biotechnol Adv 2023; 66:108168. [PMID: 37146921 DOI: 10.1016/j.biotechadv.2023.108168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Grasses, legumes and green plant wastes represent a ubiquitous feedstock for developing a bioeconomy in regions across Europe. These feedstocks are often an important source of ruminant feed, although much remains unused or underutilised. In addition to proteins, these materials are rich in fibres, sugars, minerals and other components that could also be used as inputs for bio-based product development. Green Biorefinery processes and initiatives are being developed to better capitalise on the potential of these feedstocks to produce sustainable food, feed, materials and energy in an integrated way. Such systems may support a more sustainable primary production sector, enable the valorisation of green waste streams, and provide new business models for farmers. This review presents the current developments in Green Biorefining, focusing on a broad feedstock and product base to include different models of Green Biorefinery. It demonstrates the potential and wide applicability of Green Biorefinery systems, the range of bio-based product opportunities and highlights the way forward for their broader implementation. While the potential for new products is extensive, quality control approval will be required prior to market entry.
Collapse
Affiliation(s)
- James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; Dept. of Environmental Engineering, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland.
| | - Gaurav Rajuaria
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carmen Dominguez
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Tralee V92 CX88, Ireland; BiOrbic Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Morten Ambye Jensen
- Aarhus University, Department of Biological and Chemical Engineering, Nørregade 44, 8000 Aarhus C, Denmark
| | - Macella F Souza
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erik Meers
- Laboratory of Bioresource Recovery (RE-SOURCE LAB), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marta Macias Aragonés
- Technological Corporation of Andalusia (CTA), C Albert Einstein S/N, INSUR building, 4th floor, 41092 Seville, Spain
| | - Dubravka Skunca
- Faculty of Business and Law, MB University, Teodora Drajzera 27, 11040 Belgrade, Serbia
| | - Johan P M Sanders
- Grassa BV, Villafloraweg 1, 5928, SZ Venlo, the Netherlands; Valorization of Plant Production Chains, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
5
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
6
|
Fuel M, Mesas C, Martínez R, Ortiz R, Quiñonero F, Bermúdez F, Gutiérrez N, Torres AM, Kapravelou G, Lozano A, Perazzoli G, Prados J, Porres JM, Melguizo C. Antioxidant and Chemopreventive Activity of Protein Hydrolysates from Raw and Germinated Flour of Legumes with Commercial Interest in Colorectal Cancer. Antioxidants (Basel) 2022; 11:2421. [PMID: 36552629 PMCID: PMC9774143 DOI: 10.3390/antiox11122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Legumes are a highly nutritious source of plant protein, fiber, minerals and vitamins. However, they also contain several bioactive compounds with significant potential benefits for human health. The objectives of this study were to evaluate the antioxidant, antitumor and chemopreventive activity of functional extracts from legumes using raw and germinated flours of six legume species of commercial interest. The methodology carried out consisted on the development of protein hydrolysates, assessment of their antioxidant capacity and in vitro tests on T84, HCT15 and SW480 colorectal cancer (CRC) cell lines. Our results showed a high antitumor activity of protein hydrolysate from M. sativa. Likewise, when combined with 5-Fluorouracile (5-Fu), there was a synergistic effect using extract concentrations from 50 to 175 µg/mL and 5-Fu concentrations from 1.5 to 5 µM. Similarly, the induction effect on detoxifying enzymes by the extracts of M. sativa, germinated V. faba Baraca × LVzt1 and V. narbonensis, which produced a higher induction rate than the positive control sulforaphane (10 µM), should be highlighted. Therefore, incorporating these enzymes into the diet could provide nutritional effects, as well as play an effective role in cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Spain
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Spain
| | - Natalia Gutiérrez
- IFAPA Centro Alameda del Obispo, Área de Genómica y Biotecnología, Apdo 3092, 14080 Córdoba, Spain
| | - Ana M. Torres
- IFAPA Centro Alameda del Obispo, Área de Genómica y Biotecnología, Apdo 3092, 14080 Córdoba, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Aída Lozano
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jesús M. Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
7
|
Liu D, Liu M, Meng D, Mu Y, Wang T, Lv Z. Harsh Sensitivity and Mechanism Exploration of an Antibacterial Peptide Extracted from Walnut Oil Residue Derived from Agro-Industrial Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7460-7470. [PMID: 35671140 DOI: 10.1021/acs.jafc.2c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) cake meal constitutes a significant amount of solid byproduct from the production of walnut oil, comprising more than 40% protein. However, it is usually not well utilized. Therefore, an antibacterial peptide was obtained by hydrolyzing walnut oil residue protein with pepsin based on the diameter parameters of the antibacterial zone in this research. The purified antibacterial peptide WRPH-II-6 was obtained by two-part purification (ultrafiltration and reversed-phase liquid chromatography) and possessed higher antibacterial activity against Escherichia coli (MIC = 1.33 mg/mL), Staphylococcus aureus (MIC = 0.33 mg/mL), and Bacillus subtilis (MIC = 0.66 mg/mL). The amino acid sequence of WRPH-II-6 was identified as TGSAVPSPRASATATMEMAAAMGLMPGSPSSVSAVMSPF, where the presence of a large proportion of hydrophobic amino acid residues, such as alanine, proline, and methionine, explained the marked antibacterial activity of WRPH-II-6. The harsh sensitivity experiment demonstrated that WRPH-II-6 retains the stability of antibacterial activity when exposed to broad-spectrum pH values, variable temperatures, and long-lasting UV irradiation. The antibacterial mechanism of the WRPH-II-6 peptide against S. aureus and B. subtilis involves nonmembrane disruption: the contact of anions and cations causes the folding and collapse of the bacterial cell membrane to achieve the inhibitory effect. The antibacterial mechanism against E. coli is membrane disruption, which markedly disrupts the bacterial cell membrane to achieve the bactericidal effect. Significantly, the walnut residual protein hydrolysate is a potent preservative and antibacterial agent.
Collapse
Affiliation(s)
- Dongwei Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Mei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dehao Meng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yihan Mu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhaolin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Department of Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Zhao Q, He L, Wang X, Ding X, Li L, Tian Y, Huang A. Characterization of a Novel Antimicrobial Peptide Isolated from Moringa oleifera Seed Protein Hydrolysates and Its Membrane Damaging Effects on Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6123-6133. [PMID: 35576531 DOI: 10.1021/acs.jafc.2c01335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study sought to identify and characterize a novel antimicrobial peptide, named MOp2 from Moringa oleifera seed protein hydrolysates, and elucidate its potential antimicrobial effects on Staphylococcus aureus. MOp2, with the amino acid sequence of His-Val-Leu-Asp-Thr-Pro-Leu-Leu (HVLDTPLL), was characterized as a hydrophobic anionic AMP of the β-sheet structure. MOp2 exhibited negligible hemolytic activity at 2.0× MIC, suggesting its inhibitory effect on the growth of S. aureus (MIC: 2.204 mM). It maintained more than 90% of antimicrobial activity under 5% salt and about 78% of antimicrobial activity at a high temperature of 115 °C for 30 min. Protease, especially acid protease, reduced its antimicrobial activity to different extents. Moreover, MOp2 caused irreversible membrane damage to S. aureus cells by increasing the membrane permeability, resulting in the release of intracellular nucleotide pools. Additionally, molecular docking revealed that MOp2 could inhibit S. aureus growth by interacting with dihydrofolate reductase and DNA gyrase through hydrogen bonding and hydrophobic interactions. Overall, MOp2 could be a potential novel antimicrobial agent against S. aureus in food processing.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuesong Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
9
|
Zhu C, Zhao Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Bai Y, Hu J, Fotina H, Wang L, Zhang X. The Antimicrobial Peptide MPX Can Kill Staphylococcus aureus, Reduce Biofilm Formation, and Effectively Treat Bacterial Skin Infections in Mice. Front Vet Sci 2022; 9:819921. [PMID: 35425831 PMCID: PMC9002018 DOI: 10.3389/fvets.2022.819921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is a common pathogen that can cause pneumonia and a variety of skin diseases. Skin injuries have a high risk of colonization by S. aureus, which increases morbidity and mortality. Due to the emergence of multidrug-resistant strains, antimicrobial peptides are considered to be among the best alternatives to antibiotics due to their unique mechanism of action and other characteristics. MPX is an antibacterial peptide extracted from wasp venom that has antibacterial activity against a variety of bacteria. This study revealed that MPX has good bactericidal activity against S. aureus and that its minimum inhibitory concentration (MIC) is 0.08 μM. MPX (4×MIC) can kill 99.9% of bacteria within 1 h, and MPX has good stability. The research on the bactericidal mechanism found that MPX could destroy the membrane integrity, increase the membrane permeability, change the membrane electromotive force, and cause cellular content leakage, resulting in bactericidal activity. Results from a mouse scratch model experiment results show that MPX can inhibit colonization by S. aureus, which reduces the wound size, decreases inflammation, and promotes wound healing. This study reports the activity of MPX against S. aureus and its mechanism and reveals the ability of MPX to treat S. aureus infection in mice, laying the foundation for the development of new drugs for bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xilong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Biomedical Engineering, Hainan University, Haikou, China
- *Correspondence: Lei Wang
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
- Xueming Zhang
| |
Collapse
|
10
|
Hou H, Wang J, Wang J, Tang W, Shaikh AS, Li Y, Fu J, Lu L, Wang F, Sun F, Tan H. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J Biomed Nanotechnol 2021; 16:1687-1718. [PMID: 33485398 DOI: 10.1166/jbn.2020.3001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the development and applications of protein drugs have attracted extensive attention from researchers. However, the shortcomings of protein drugs also limit their further development. Therefore, bioactive peptides isolated or simulated from protein polymers have broad application prospects in food, medicine, biotechnology, and other industries. Such peptides have a molecular weight distribution between 180 and 1000 Da. As a small molecule substance, bioactive peptide is usually degraded by various enzymes in the organism and have a short half-life. At the same time, such substances have poor stability and are difficult to produce and store. Therefore, these active peptides may be modified through phosphorylation, glycosylation, and acylation. Compared with other protein drugs, the modified active peptides are more easily absorbed by the body, have longer half-life, stronger targeting, and fewer side effects in addition to higher bioavailability. In the light of their functions, bioactive peptide can be divided into antimicrobial, anti-tumour, anti-angiogenic, antioxidant, anti-fatigue, and anti-hypertensive peptides. This article mainly focuses on the introduction of several promising biologically active peptides functioning as antimicrobial, anti-tumour, antiangiogenic, and antioxidant peptides from the three aspects modification, structural characteristics and mechanism of action.
Collapse
|
11
|
Cheng R, Li W, Sample KM, Xu Q, Liu L, Yu F, Nie Y, Zhang X, Luo Z. Characterization of the transcriptional response of Candida parapsilosis to the antifungal peptide MAF-1A. PeerJ 2020; 8:e9767. [PMID: 33194346 PMCID: PMC7482638 DOI: 10.7717/peerj.9767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
Candida parapsilosis is a major fungal pathogen that leads to sepsis. New and more effective antifungal agents are required due to the emergence of resistant fungal strains. MAF-1A is a cationic antifungal peptide isolated from Musca domestica that is effective against a variety of Candida species. However, the mechanism(s) of its antifungal activity remains undefined. Here, we used RNA-seq to identify differentially expressed genes (DEGs) in Candida parapsilosis following MAF-1A exposure. The early (6 h) response included 1,122 upregulated and 1,065 downregulated genes. Late (18 h) responses were associated with the increased expression of 101 genes and the decreased expression of 151 genes. Upon MAF-1A treatment for 18 h, 42 genes were upregulated and 25 genes were downregulated. KEGG enrichment showed that the DEGs in response to MAF-1A were mainly involved in amino acid synthesis and metabolism, oxidative phosphorylation, sterol synthesis, and apoptosis. These results indicate that MAF-1A exerts antifungal activity through interference with Candida parapsilosis cell membrane integrity and organelle function. This provides new insight into the interaction between Candida parapsilosis and this antimicrobial peptide and serves as a reference for future Candida parapsilosis therapies.
Collapse
Affiliation(s)
- Rong Cheng
- Guizhou University School of Medicine, Guiyang, China
| | - Wei Li
- Department of Cadiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Klarke M Sample
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qiang Xu
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fuxun Yu
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yingjie Nie
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiangyan Zhang
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, China.,NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
12
|
Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019; 122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, consumers' demand for cosmeceutical products with protective and therapeutic functions derived from natural sources have caused this industry to search for alternative active ingredients. Bioactive peptides have a wide spectrum of bioactivities, which make them ideal candidates for development of these cosmeceutical products. In vitro studies have demonstrated that bioactive peptides (obtained as extracts, hydrolysates, and/or individual peptides) exhibit biological properties including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes such as elastase, collagenase, tyrosinase and hyaluronidase. Some studies report multifunctional bioactive peptides that can simultaneously affect, beneficially, multiple physiological pathways in the skin. Moreover, in vivo studies have revealed that topical application or consumption of bioactive peptides possess remarkable skin protection. These properties suggest that bioactive peptides may contribute in the improvement of skin health by providing specific physiological functions, even though the mechanisms underlying the protective effect have not been completely elucidated. This review provides an overview of in vitro, in silico and in vivo properties of bioactive peptides with potential use as functional ingredients in the cosmeceutical field. It also describes the possible mechanisms involved as well as opportunities and challenges associated with their application.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States.
| |
Collapse
|
13
|
Mousavi M, Johari B, Zargan J, Haji Noor Mohammadi A, Goudarzi HR, Dezianian S, Keshavarz Alikhani H. Investigating Antibacterial Effects of Latrodectus Dahli Crude Venom on Escherichia coli, Staphylococcus aureus and Bacillus subtilis. MEDICAL LABORATORY JOURNAL 2019. [DOI: 10.29252/mlj.13.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Ning HQ, Li YQ, Tian QW, Wang ZS, Mo HZ. The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|