1
|
Hsu CY, Moradkasani S, Suliman M, Uthirapathy S, Zwamel AH, Hjazi A, Vashishth R, Beig M. Global patterns of antibiotic resistance in group B Streptococcus: a systematic review and meta-analysis. Front Microbiol 2025; 16:1541524. [PMID: 40342597 PMCID: PMC12060732 DOI: 10.3389/fmicb.2025.1541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/14/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Streptococcus agalactiae, or group B Streptococcus (GBS), is a significant pathogen associated with severe infections in neonates, particularly sepsis and meningitis. The increasing prevalence of antibiotic resistance among GBS strains is a growing public health concern, necessitating a comprehensive meta-analysis to evaluate the prevalence of this resistance globally. Methods We conducted a comprehensive systematic search across four major scientific databases: Scopus, PubMed, Web of Science, and EMBASE, targeting articles published until December 13, 2023. This meta-analysis focused on studies that examined antibiotic resistance in GBS strains. The Joanna Briggs Institute tool was employed to assess the quality of the included studies. This meta-analysis applied a random-effects model to synthesize data on antibiotic resistance in GBS, incorporating subgroup analyses and regression techniques to explore heterogeneity and trends in resistance rates over time. Outliers and influential studies were identified using statistical methods such as Cook's distance, and funnel plot asymmetry was assessed to evaluate potential publication bias. All analyses were conducted using R software (version 4.2.1) and the metafor package (version 3.8.1). Results This study included 266 studies from 57 countries, revealing significant variability in GBS antibiotic resistance rates. The highest resistance rates were observed for tetracycline (80.1, 95% CI: 77.1-82.8%), while tedizolid (0.1, 95% CI: 0.0-0.8%) showed the lowest resistance rates. Significant heterogeneity in resistance rates was observed, particularly for antibiotics such as azithromycin and gentamicin (I 2 = 97.29%), variability across studies. On the other hand, tigecycline and ceftaroline exhibited no heterogeneity (I 2 = 0%), suggesting consistent resistance patterns. Subgroup analyses revealed disparities in resistance rates based on country, continent, and methodological categories. Significant increase in resistance rates for several antibiotics over time, including clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, chloramphenicol, and ofloxacin. Ofloxacin and cefuroxime showed particularly steep trends. Conversely, a declining resistance trend was observed for oxacillin. Conclusion This study emphasizes the growing issue of antibiotic resistance in GBS strains. Notable resistance to older and newer antibiotics, increasing resistance over time, regional disparities, and methodological variations are noted. Rising resistance trends for multiple antibiotics underscore the urgent need for global surveillance and improved antibiotic stewardship. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024566269, CRD42024566269.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | | | - Muath Suliman
- Department of Laboratory Medicine, School of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department Tishk International University Erbil, Kurdistan Region, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Alzayer M, Alkhulaifi MM, Alyami A, Aldosary M, Alageel A, Garaween G, Shibl A, Al-Hamad AM, Doumith M. Molecular typing and antimicrobial resistance of group B Streptococcus clinical isolates in Saudi Arabia. J Glob Antimicrob Resist 2023; 35:244-251. [PMID: 37844802 DOI: 10.1016/j.jgar.2023.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVES Group B Streptococcus (GBS) has emerged as an important cause of severe infections in adults. However, limited data are available regarding the epidemiology of GBS in Saudi Arabia. METHODS Isolates were collected over a period of eight months from colonized (n = 104) and infected adults (n = 95). Serotypes and virulence determinants were detected by polymerase chain reactions (PCRs). Genetic relatedness was assessed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). Antimicrobial susceptibilities were determined by disk diffusion. RESULTS Serotypes III and V (25% each) were the most prevalent, followed by serotypes II (16.18%), Ia (13.24%), VI (9.31%), and Ib (8.82%), while five isolates remained non-typeable (2.45%). Hypervirulent serotype III/CC17 clone (n = 21) accounted for 41.18% of the serotype III isolates. Most isolates (53.92%) harboured pilus island (PI) 1 and 2a types, while PI-2b was predominantly detected in the hypervirulent clone. Isolates were variably resistant to tetracycline (76.47%), erythromycin (36.76%), clindamycin (25.49%), and levofloxacin (6.37%), but remained susceptible to penicillin. Macrolide resistant isolates exhibited constitutive (55.42%) and inducible macrolide-lincosamide-streptogramin B resistance phenotypes (33.74%), while a few had L (9.64%) or M (1.2%) phenotypes. MLVA patterns of dominant serotypes III and V revealed 40 different types divided into 12 clusters and 28 singletons. Interestingly, macrolide resistance was significantly associated with two major MLVA types. CONCLUSIONS GBS isolates belonged predominantly to serotypes III and V, but there were no clear associations between serotypes and patient groups. The studied isolates exhibited high levels of resistance to erythromycin and clindamycin that need further surveillance.
Collapse
Affiliation(s)
- Maha Alzayer
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alyami
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Aldosary
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Alageel
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghada Garaween
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Atef Shibl
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arif M Al-Hamad
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Hsu JF, Lu JJ, Chu SM, Lee WJ, Huang HR, Chiang MC, Yang PH, Tsai MH. The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. Int J Mol Sci 2023; 24:15387. [PMID: 37895067 PMCID: PMC10607198 DOI: 10.3390/ijms242015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an important pathogen of bacterial meningitis in neonates. We aimed to investigate the clinical and genetic characteristics of neonatal GBS meningitis. All neonates with GBS meningitis at a tertiary level medical center in Taiwan between 2003 and 2020 were analyzed. Capsule serotyping, multilocus sequence typing, antimicrobial resistance, and whole-genome sequencing (WGS) were performed on the GBS isolates. We identified 48 neonates with GBS meningitis and 140 neonates with GBS sepsis. Neonates with GBS meningitis had significantly more severe clinical symptoms; thirty-seven neonates (77.8%) had neurological complications; seven (14.6%) neonates died; and 17 (41.5%) survivors had neurological sequelae at discharge. The most common serotypes that caused meningitis in neonates were type III (68.8%), Ia (20.8%), and Ib (8.3%). Sequence type (ST) is highly correlated with serotypes, and ST17/III GBS accounted for more than half of GBS meningitis cases (56.3%, n = 27), followed by ST19/Ia, ST23/Ia, and ST12/Ib. All GBS isolates were sensitive to ampicillin, but a high resistance rates of 72.3% and 70.7% to erythromycin and clindamycin, respectively, were noted in the cohort. The virulence and pilus genes varied greatly between different GBS serotypes. WGS analyses showed that the presence of PezT; BspC; and ICESag37 was likely associated with the occurrence of meningitis and was documented in 60.4%, 77.1%, and 52.1% of the GBS isolates that caused neonatal meningitis. We concluded that GBS meningitis can cause serious morbidity in neonates. Further experimental models are warranted to investigate the clinical and genetic relevance of GBS meningitis. Specific GBS strains that likely cause meningitis requires further investigation and clinical attention.
Collapse
Affiliation(s)
- Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jang-Jih Lu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wei-Ju Lee
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Peng-Hong Yang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Horng Tsai
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Neonatology and Pediatric Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| |
Collapse
|
4
|
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10:microorganisms10122483. [PMID: 36557736 PMCID: PMC9784991 DOI: 10.3390/microorganisms10122483] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine.
Collapse
|
5
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Motallebirad T, Fazeli H, Azadi D, Shokri D, Moghim S, Esfahani BN. Determination of Capsular Serotypes, Antibiotic Susceptibility Pattern, and Molecular Mechanism of Erythromycin Resistance among Clinical Isolates of Group B Streptococcus in Isfahan, Iran. Adv Biomed Res 2021; 10:27. [PMID: 34760809 PMCID: PMC8531737 DOI: 10.4103/abr.abr_269_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Documented streptococcal resistance to erythromycin has recently been raised. The aim of this study is to identify the molecular mechanism of erythromycin resistance among group B Streptococcus (GBS) strains and to correlate with the clinical origin of strains. Materials and Methods: A total number of 134 colonizing (n = 36), invasive (n = 36), noninvasive (n = 46), and asymptomatic (n = 16) GBS isolates were characterized by the detection of dltS gene, capsular serotyping, antibiotic susceptibility profiles using disc diffusion method, and screening of the ermB, ermTR, and mefA resistance genes. Results: The distribution of capsular serotypes was as follow: serotype III (24.6%), Ia (21.6%), V (17.9%), Ib (14.9%), II (8.9%), IV (8.9%), VI (1.5%), and VII (1.5%). From 134 GBS isolates, 51 (38%) isolates were resistant to erythromycin. The constitutive macrolide lincosamide streptogrmin B (MLSB) was the most common resistance phenotype (62.7%), followed by inducible MLSB (27.4%) and M phenotype (9.8%). Erythromycin resistance rate was higher among asymptomatic GBS strains (13/16, 81.2%). Serotype III was the most prevalent type among resistant isolates (41.1%). The ermB gene highly distributed among resistant strains (64.7%), followed by ermTR (21.5%) and mefA (9.8%). The ermB gene was related to constitutive MLSB phenotype (84.3%, P < 0.05) and serotypes III (61.9%), Ib (87.5%), and V (83.3%). All M phenotype strains harbored mefA gene and were in association with serotype Ia (90%). Conclusion: The current study suggests that ribosomal modification with erm genes is the main mechanism of erythromycin resistance. Because of relatively high prevalence of erythromycin resistance, double disc test highly recommended for GBS disease treatment and intrapartum prophylaxis among penicillin intolerant patients in our region.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Azadi
- Department of Basic and Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Dariush Shokri
- Infectious Disease and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Hsu JF, Tsai MH, Lin LC, Chu SM, Lai MY, Huang HR, Chiang MC, Yang PH, Lu JJ. Genomic Characterization of Serotype III/ST-17 Group B Streptococcus Strains with Antimicrobial Resistance Using Whole Genome Sequencing. Biomedicines 2021; 9:biomedicines9101477. [PMID: 34680594 PMCID: PMC8533585 DOI: 10.3390/biomedicines9101477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Antibiotic-resistant type III/ST-17 Streptococcus agalactiae (group B Streptococcus, GBS) strain is predominant in neonatal invasive GBS diseases. We aimed to investigate the antibiotic resistance profiles and genetic characteristics of type III/ST-17 GBS strains. Methods: A total of 681 non-duplicate GBS isolates were typed (MLST, capsular types) and their antibiotic resistances were performed. Several molecular methods (WGS, PCR, sequencing and sequence analysis) were used to determine the genetic context of antibiotic resistant genes and pili genes. Results: The antibiotic resistant rates were significantly higher in type Ib (90.1%) and type III (71.1%) GBS isolates. WGS revealed that the loss of PI-1 genes and absence of ISSag5 was found in antibiotic-resistant III/ST-17 GBS isolates, which is replaced by a ~75-kb integrative and conjugative element, ICESag37, comprising multiple antibiotic resistance and virulence genes. Among 190 serotype III GBS isolates, the most common pilus island was PI-2b (58.4%) alone, which was found in 81.3% of the III/ST-17 GBS isolates. Loss of PI-1 and ISSag5 was significantly associated with antibiotic resistance (95.5% vs. 27.8%, p < 0.001). The presence of ICESag37 was found in 83.6% of all III/ST-17 GBS isolates and 99.1% (105/106) of the antibiotic-resistant III/ST-17 GBS isolates. Conclusions: Loss of PI-1 and ISSag5, which is replaced by ICESag37 carrying multiple antibiotic resistance genes, accounts for the high antibiotic resistance rate in III/ST-17 GBS isolates. The emerging clonal expansion of this hypervirulent strain with antibiotic resistance after acquisition of ICESag37 highlights the urgent need for continuous surveillance of GBS infections.
Collapse
Affiliation(s)
- Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 638, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Mei-Yin Lai
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Peng-Hong Yang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jang-Jih Lu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 2554); Fax: +886-3-397-1827
| |
Collapse
|
8
|
Rostami S, Moeineddini L, Ghandehari F, Khorasani MR, Shoaei P, Ebrahimi N. Macrolide-resistance, capsular genotyping and associated factors of group B Streptococci colonized pregnant women in Isfahan, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:183-189. [PMID: 34540153 PMCID: PMC8408030 DOI: 10.18502/ijm.v13i2.5979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Group B streptococcus (GBS) can cause severe and invasive infections in pregnant women, infants, and adults. This study aimed to investigate the risk factors of GBS colonization in pregnant women and determine the macrolide resistance and capsular type of isolates. Materials and Methods: In a cross-sectional study, a total of 200 pregnant women were screened for GBS colonization by phenotypic methods. Antibiotic susceptibility pattern of colonizing isolates and ermB, ermTR, mefA/E genes were detected. Also, molecular capsular types of isolates were distinguished. Results: The overall prevalence of colonization of participates with GBS was 13.5%. Statistical analysis showed that there was no association between risk factors and colonization with GBS. The highest resistance was observed to erythromycin (44.4%) followed by clindamycin (29.6%), penicillin, ampicillin, and ceftriaxone (18.5%), levofloxacin (11.1%), and 29.6% isolates were multidrug-resistant. ermTR and mefA/E genes were detected in 37% and 11.1% isolates; respectively and the ermB gene was not detected. The most common capsular type was type Ib (44.4%) followed by type III (40.7%), type II (11.1), and type Ia (3.7%). Conclusion: In the present study, the prevalence of GBS was in the medium range. Resistance to key antibiotic agents was relatively high. Also, capsular serotype Ib was the predominant serotype, which emphasizes the importance of monitoring the molecular typing of the GBS isolates regularly.
Collapse
Affiliation(s)
- Soodabeh Rostami
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Moeineddini
- Department of Microbiology, Falavarjan Islamic Azad University, Isfahan, Iran
| | | | - Marzieh Rahim Khorasani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Shoaei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Ebrahimi
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Khademi F, Sahebkar A. Group B streptococcus drug resistance in pregnant women in Iran: a meta-analysis. Taiwan J Obstet Gynecol 2021; 59:635-642. [PMID: 32917310 DOI: 10.1016/j.tjog.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 10/23/2022] Open
Abstract
Streptococcus (S.) agalactiae colonizes in the female genitourinary and lower gastrointestinal tracts and is responsible for a wide range of infections in newborns, pregnant women and non-pregnant adults. Therefore, antibiotic prophylaxis and infection treatment against S. agalactiae is important. The aim of this study was to determine the prevalence of S. agalactiae antibiotic resistance in Iranian patients, especially among pregnant women. A systematic literature search was conducted in PubMed, Scopus, Google Scholar and the Scientific Information Database (SID) databases by using related keywords and without any time limitation. A total of 26 studies reporting the prevalence of S. agalactiae antibiotic resistance in Iran met our predefined inclusion and exclusion criteria and were included in the meta-analysis. High rates of S. agalactiae antibiotic resistance in pregnant women were found against tetracycline (96.2%), trimethoprim-sulfamethoxazole (84.7%), cefotaxime (41.3%), clindamycin (26.8%) and erythromycin (21%). Additionally, resistance to penicillin (4.2%), ampicillin (2.7%), cefazolin (7.6%), vancomycin (2.4%), ceftriaxone (12.5%), ciprofloxacin (13.6%) and nitrofurantoin (0%) was low. Our results revealed that penicillin and ampicillin among penicillin-tolerant Iranian pregnant women, and vancomycin and cefazolin among penicillin-allergic women are still drugs of choice in intrapartum prophylaxis for preventing S. agalactiae vertical transmission and early-onset neonatal disease.
Collapse
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Motallebirad T, Fazeli H, Ghahiri A, Shokri D, Jalalifar S, Moghim S, Esfahani BN. Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran. BMC Microbiol 2021; 21:139. [PMID: 33947330 PMCID: PMC8096152 DOI: 10.1186/s12866-021-02186-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 01/31/2023] Open
Abstract
Background The information on antibiotic resistance and molecular features of Group B Streptococcus (GBS) are essential for epidemiological purposes as well as vaccine development. Therefore, we aimed to assess the antimicrobial resistance profiles and molecular characteristics of GBS isolates in Isfahan, Iran. A total number of 72 colonizing and invasive GBS were collected from pregnant and non-pregnant women. The GBS isolates were analyzed for resistance profiles, capsular genotyping, and detection of PI-1, PI-2a, PI-2b, hvgA, ermB, ermTR, lnuB and, mefA genes. Besides, erythromycin-resistant strains were subjected to multilocus sequence typing (MLST). Results The prevalence of colonizing and invasive GBS were 11 and 0.05%, respectively. The frequency of capsular serotypes was as follows: III (26.3%), Ia (20.83%), Ib and V (each 15.2%), IV (9.7%), II (8.3%), VII (2.7%), and VI (1.3%). Overall frequencies of PIs were as follows: PI-1, 37.5%, PI-1 + PI-2a, 30.5%, PI-1 + PI-2b, 29.1% and PI-2b, 2.7%. Two maternal colonizing GBS (2.6%) were hvgA positive and were belonged to ST-17/CPS-III/PI-1 + PI-2b lineage. Among 30(41.6%) erythromycin resistant GBS, 21 isolates (70%) harbored ermB gene, followed by ermTR (23.3%) and mefA (10%). One clindamycin-resistant isolate harbored the lnuB gene. MLST analysis revealed the following five clonal complexes (CCs) and nine STs: (CC-19/ST-335, ST-19, and ST-197), (CC-12/ST-43, ST-12), (CC-23/ST-163, ST-23), (CC-17/ST-17) and (CC-4/ST-16). Conclusion The study shows an alarmingly high prevalence of erythromycin-resistant GBS in Iran. In addition, we report dissemination of ST-335/CPS-III clone associated with tetracycline and erythromycin resistance in our region. The distribution of capsular and pilus genotypes varies between invasive and colonizing GBS that could be helpful for vaccine development.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Gynecology and Obstetrics, Al-Zahra university Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Shokri
- Infectious disease and tropical medicine research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran.
| |
Collapse
|
11
|
Ghazvini K, Keikha M. The impact of the scpB virulence factor of Streptococcus agalactiae and develop to early-onset disease in newborns. GENE REPORTS 2021; 22:101002. [DOI: 10.1016/j.genrep.2020.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Motallebirad T, Fazeli H, Jalalifar S, Shokri D, Moghim S, Nasr Esfahani B. Molecular Characterization of Hospital- and Community-Acquired Streptococcus agalactiae Isolates among Nonpregnant Adults in Isfahan, Iran. Adv Biomed Res 2021; 9:44. [PMID: 33457327 PMCID: PMC7792884 DOI: 10.4103/abr.abr_25_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/30/2020] [Accepted: 06/28/2020] [Indexed: 11/14/2022] Open
Abstract
Background: The increasing incidence of Group B Streptococcus (GBS) infection among nonpregnant adults has become of growing clinical and public health concern. The current study investigated the distribution of important virulence determinants and antibiotic susceptibility of GBS isolates causing community acquired (CA) and hospital acquired (HA) infections among nonpregnant adults. Materials and Methods: A total of 62 GBS, including 31 CA GBS and 31 HA GBS, were collected from a teaching hospital in Isfahan, Iran. Capsular polysaccharide genotypes (CPS), PI 1, PI 2a, PI 2b, and hypervirulent GBS adhesin (hvgA) virulence genes and antibiotic resistance profiling were determined. Results: There were 19 (30.6%) cases of underlying disease that diabetes mellitus (20.9%) was most common. The rate of multidrug resistant GBS strains was accounted for 29%. Distribution of macrolide resistant phenotypes was as follows: constitutive macrolides, lincosamides, and streptogramin B (MLSB) (15 isolates); inducible resistance to MLSB; and L phenotype (each 5 isolates) and M phenotype (1 isolate). V and Ia serotypes were the most predominant capsular type in HA GBS and CA GBS isolates, respectively. The most frequent pilus types were PI 1, PI 1+PI 2a, PI 1+PI 2b, and PI 2a. PI 1 and PI 1+PI 2a had significantly different distributions between CA and HA GBS isolates. Three CA GBS isolates (9.6%) were positive for hvgA gene that belonged to clonal complex 17/sequence type 17/CPS III/PI 1+PI 2b lineage. Conclusion: There was a significant difference in the distribution of PIs among CA GBS and HA GBS isolates in our region.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Darioush Shokri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Nabavinia M, Khalili MB, Sadeh M, Eslami G, Vakili M, Azartoos N, Mojibiyan M. Distribution of Pilus island and antibiotic resistance genes in Streptococcus agalactiae obtained from vagina of pregnant women in Yazd, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:411-416. [PMID: 33603995 PMCID: PMC7867704 DOI: 10.18502/ijm.v12i5.4601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background and Objectives: Due to the important role of Streptococcus agalactiae, Group B streptococci (GBS), in production of invasive disease in neonates, investigation regarding the pathogenicity and antibiotic resistance factors is necessary in selecting the appropriate therapeutic agents. Beside capsule, the pilus has been currently recognized as an important factor in enhancing the pathogenicity of GBS. Resistance of GBS to selected antibiotics is noticeably increasing which is mainly due to the anomalous use of these drugs for treatment. The aim of this study was to determine the prevalence of pili genes followed by antibiotic susceptibility of GBS, previously serotyped, isolated from pregnant women in the city of Yazd, Iran. Materials and Methods: Fifty seven GBS from pregnant women were subjected to multiplex PCR for determination of PI-1, PI-2a and PI-2b pilus-islands and simultaneously, the phenotype of antibiotic resistance to penicillin, tetracycline, erythromycin, clindamycin, gentamycin and levofloxacin was determined. Antibiotic resistance genes (ermA, ermB, mefA, tetM, int-Tn) were further diagnosed using PCR and multiplex PCR. Results: PI-1+PI-2a with 71.9%; followed by PI-2a (21.1%) and PI-2b (7%) were observed. PI-1+PI-2a in serotype III was (73.2%), serotype II, Ia, Ib and V were 12.2%, 9.8%, 2.4% and 2.4% respectively. GBS penicillin sensitive was 89.5% and 96.5% resistance to tetracycline. The frequency of resistance genes were as follows: tetM (93%), ermA (33.3%), ermB (8.8%), int-Tn (80.7%) and mefA (0). Conclusion: Majority of GBS contained PI-1+PI-2a. Hence presence of this pilus stabilizes the colonization, therefore designing a program for diagnosing and treatment of infected pregnant women seems to be necessary.
Collapse
Affiliation(s)
- Mahdieh Nabavinia
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Khalili
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Sadeh
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Vakili
- Department of Public Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nastaran Azartoos
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdiye Mojibiyan
- Department of Obstetrics and Gynecology, Mojibiyan Hospital, Yazd, Iran
| |
Collapse
|
14
|
Phylogeny, recombination, and invasiveness of group B Streptococcus revealed by genomic comparisons of its global strains. Eur J Clin Microbiol Infect Dis 2020; 40:581-590. [PMID: 33067737 PMCID: PMC7567417 DOI: 10.1007/s10096-020-04067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
Capsular polysaccharide (CPS) genes and pilus islands encode important virulence factors for group B Streptococcus (GBS) genomes. This study aims to detect phylogenetic inconsistency in CPS genes and pilus islands in GBSs and to explore its relationship with invasiveness. A total of 1016 GBS genomes were downloaded from the NCBI public database. The multi-locus sequence typing (MLST) and Bayesian analysis of Population Structure (BAPS) analyses were both conducted for phylogeny construction. Serotyping and pilus typing were determined in silico using the genomic sequences. The CPS and pilus typing results were generally consistent with MLST and BAPS clustering. GBS isolates of serotype II and of the PI-1 + PI-2b and PI-2a types were more prone to phylogenetic inconsistency than the others. Isolates of serotype Ib and of PI-1 + PI-2a were more likely to appear as colonizing strains, whereas PI-2b was more likely to appear in invasive strains. For serotype V, phylogenetic inconsistency occurred more commonly in colonizing isolates, while for serotype III, the opposite occurred. The present study profiles for the first time the phylogenetic inconsistency of CPS genes and pilus islands in global GBS isolates, which is helpful for infection control and the development of new vaccines for the prevention of GBS occurrence.
Collapse
|
15
|
Shadbad MA, Kafil HS, Rezaee MA, Farzami MR, Dehkharghani AD, Sadeghi J, Gholizadeh P, Khodaei F, Aghazadeh M. Streptococcus agalactiae clinical isolates in Northwest Iran: antibiotic susceptibility, molecular typing, and biofilm formation. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc23. [PMID: 33214988 PMCID: PMC7656979 DOI: 10.3205/dgkh000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Group B Streptococcus (S. agalactiae) is one of the colonizing bacteria in pregnant women which can be a causative agent of meningitis and neonatal sepsis. This organism has also been increasingly related to invasive infections in non-pregnant adults. Objective: In present study, we aimed to characterize the clonality of biofilm-producing S. agalactiae isolates from various sources from two different clinical laboratories in Tehran, Iran. Materials and Methods: S. agalactiae isolates were collected from community-acquired (CA) and hospital-acquired (HA) infections in pregnant and non-pregnant adults. The antimicrobial susceptibility patterns and biofilm formation ability were determined. In addition, pulse field gel electrophoresis (PFGE) was used to verify the clonal diversity of isolates. Results: Out of the 87 isolates, 15 (16.6%) formed biofilm. The antibiotic resistance rate was 98.85% for clindamycin, 98.85% for tetracycline, followed by 29.88% for erythromycin, 9.19% for moxifloxacin and 6.89% for levofloxacin. The PFGE patterns revealed a total of 16 different clusters consisting of 6 single types (STs). Conclusion: This study evaluated the biofilm formation of clinical S. agalactiae, which may be a step towards understanding its role in pathological processes. Biofilm formation was significant only in the hypervirulent ST-17 clone. Intraclonal spread of isolates indicates that a local lineage of isolates is responsible for infection by these bacteria.
Collapse
Affiliation(s)
- Mohammad Alipour Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Ahangarzadeh Rezaee
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javid Sadeghi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Khodaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Determinants of Group B streptococcal virulence potential amongst vaginal clinical isolates from pregnant women. PLoS One 2019; 14:e0226699. [PMID: 31851721 PMCID: PMC6919605 DOI: 10.1371/journal.pone.0226699] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a Gram-positive bacterium isolated from the vaginal tract of approximately 25% of women. GBS colonization of the female reproductive tract is of particular concern during pregnancy as the bacteria can invade gestational tissues or be transmitted to the newborn during passage through the birth canal. Infection of the neonate can result in life-threatening pneumonia, sepsis and meningitis. Thus, surveillance of GBS strains and corresponding virulence potential during colonization is warranted. Here we describe a panel of GBS isolates from the vaginal tracts of a cohort of pregnant women in Michigan, USA. We determined that capsular serotypes III and V were the most abundant across the strain panel, with only one isolate belonging to serotype IV. Further, 12.8% of strains belonged to the hyper-virulent serotype III, sequence type 17 (ST-17) and 15.4% expressed the serine rich repeat glycoprotein-encoding gene srr2. Functional assessment of the colonizing isolates revealed that almost all strains exhibited some level of β-hemolytic activity and that ST-17 strains, which express Srr2, exhibited increased bacterial adherence to vaginal epithelium. Finally, analysis of strain antibiotic susceptibility revealed the presence of antibiotic resistance to penicillin (15.4%), clindamycin (30.8%), erythromycin (43.6%), vancomycin (30.8%), and tetracycline (94.9%), which has significant implications for treatment options. Collectively, these data provide important information on vaginal GBS carriage isolate virulence potential and highlight the value of continued surveillance.
Collapse
|